Connect with us

Published

on

Extreme “wind droughts” that reduce power output from turbines for extended periods could become 15% longer by the end of the century across much of the northern hemisphere under a moderate warming scenario.

That is according to a new study in Nature Climate Change, which explores how climate change could impact the length and frequency of prolonged low-wind events around the world.

According to the study, “prominent” wind droughts have already been documented in Europe, the US, northeastern China, Japan and India.

As the planet warms, wind droughts will become longer in the northern hemisphere and mid-latitudes – especially across the US, northeastern China, Russia and much of Europe – the paper says.

The study – which focuses on onshore wind – warns that “prolonged” wind droughts could “threaten global wind power security”.

However, they add that research into the effects of climate change on wind supply can help “prepare for and mitigate the adverse impacts” of these prolonged low-wind events.

Combining wind power with other energy technologies – such as solar, hydro, nuclear power and energy storage – can help reduce the impact of wind droughts on global energy supply, the study says.

One expert not involved in the research tells Carbon Brief that the findings do not “spell doom for the wind industry”.

Instead, he says the study is a “navigation tool” which could help the energy industry to “counteract” future challenges.

Wind drought

Wind power is one of the fastest-growing sources of energy in the world and currently makes up around 8% of global electricity supply. It is also playing a crucial role in the decarbonisation of many countries’ energy systems.

Wind is the result of air moving from areas of high pressure to areas of low pressure. These differences in air pressure are often due to the Earth’s surface being heated unevenly.

Human-caused climate change is warming the planet’s atmosphere and oceans. However, different regions are heating at different rates, resulting in a shift in global wind patterns. The IPCC finds that global average wind speeds (excluding Australia) slowed down slightly over 1979-2018.

There have already been dozens of recorded instances of prolonged low-wind events, known as wind droughts, which can drive down power production from wind turbines.

Dr Iain Staffell is an associate professor at the Centre for Environmental Policy at Imperial College London who was not involved in the study. He tells Carbon Brief that wind droughts often “push up power prices” as countries turn to more expensive alternative energy supplies, such as fossil fuels.

For example, Staffell tells Carbon Brief that, in the winter of 2024-25, Germany saw an “extended cold-calm spell which sent power prices to record highs”. (In German, this type of weather event is referred to as a “dunkelflaute, often translated as “dark doldrums”.) He adds:

“It’s important to note that I’m not aware of anywhere in the world that has suffered a blackout because of a wind drought.”

Capacity factor

The productivity of wind power sites is often measured by their “capacity factor” – the amount of electricity that is actually generated over a period of time, relative to the maximum amount that could have been generated in theory.

A capacity factor of one indicates that wind turbines are generating the maximum possible amount of electricity, while zero indicates that they are not producing any power.

The authors define a wind drought as the 20th percentile in each grid cell – in other words, winds ranking in the slowest bottom fifth of winds typically recorded in the region.

They look at the frequency of prolonged wind droughts and how that might change as the world warms.

The map below shows regions’ average capacity factor at 100 metres above the ground level, derived from the ERA5 reanalysis data over 1980-2022, where darker shading indicates a higher capacity factor.

It also shows 19 wind droughts recorded since the year 2000 across Europe, the US, northeastern China, Japan and India. Wind droughts are indicated by yellow triangles for local events and hashed areas for larger-scale events.\

Wind droughts, indicated by yellow triangles for local events and hashed areas for larger regions. Shading shows the region’s average capacity factor at 100 metres above the ground level, derived from the ERA5 reanalysis data over 1980-2022, where darker shading indicates a higher capacity factor. Source: Qu et al (2025).
Wind droughts, indicated by yellow triangles for local events and hashed areas for larger regions. Shading shows the region’s average capacity factor at 100 metres above the ground level, derived from the ERA5 reanalysis data over 1980-2022, where darker shading indicates a higher capacity factor. Source: Qu et al (2025).

The map also shows that the darker shading for “abundant wind resources” is typically found in the mid-latitudes near “major storm tracks”, including the central US, northern Africa, northwestern Europe, northern Russia, northeastern China and Australia.

Modelling wind

To assess the severity of past and future wind droughts, the authors consider both the frequency and duration of these low-wind events.

To calculate wind drought duration, the authors use reanalysis data and models from the sixth Coupled Model Intercomparison Project (CMIP6) – the international modelling effort that feeds into the influential assessment reports from the Intergovernmental Panel on Climate Change (IPCC).

The authors then look at how wind drought conditions may change in the future, by modelling wind speeds over 2015-2100 under a range of future warming scenarios.

They find that wind drought frequency and duration will both increase in the northern hemisphere and mid-latitudes by the end of the century. The authors identify “particularly notable increases” in wind drought frequency in the US, northeastern China, Russia and much of Europe.

In the northern mid-latitudes, there will be a one-to-two hour increase in average wind drought duration by the end of the century under the moderate SSP2-4.5 scenario, according to the study. This is a 5-15% increase compared to today’s levels.

The authors also assess “extreme long-duration events” by looking at the longest-lasting wind drought that could happen once every 25 years.

The study projects roughly a 10%, 15% and 20% “elongation” in these long-duration wind droughts across “much of the northern mid-latitude regions” under the low, moderate and very high warming scenarios, by the end of the century.

However, the authors find “strong asymmetric changes” in their results, projecting a decrease in wind drought frequency and intensity in the southern hemisphere.

The authors suggest that the increase in wind droughts in the northern hemisphere is partly because of Arctic amplification – the phenomenon whereby the Arctic warms more quickly than the rest of the planet.

Accelerated warming in the Arctic narrows the temperature gap between the north pole and the equator and alters atmosphere-ocean interactions, which reduces wind speeds in the northern hemisphere.

Conversely, the authors suggest that increasing wind speeds in the southern hemisphere are caused by the land warming faster than the ocean, resulting in a greater difference in temperature between the land and the sea.

Record-breaking wind droughts

Finally, the authors also investigate the risk of “record-breaking wind droughts” – extreme events that would only be expected once every 1,000 years under the current climate.

They use CMIP6 models, based on historical data over 1980-2014, to assess how long-lasting such an event would be in different regions of the world. These results are shown on the map below, where darker brown indicates longer-duration wind droughts.

One-in-1,000 year “record-breaking wind droughts”, based on observed data over 1980-2014. Source: Qu et al (2025).
One-in-1,000 year “record-breaking wind droughts”, based on observed data over 1980-2014. Source: Qu et al (2025).

These 1,000-year record-breaking wind droughts typically last for 150-350 hours (6-15 days), occasionally reaching up to 400 hours in regions such as India, East Russia, east Africa and east Brazil, the paper says.

The authors go on to assess the risk of record-breaking wind droughts for existing wind turbines under different warming scenarios.

The plot below shows the fraction of the CMIP6 models used in this study that project record-breaking wind droughts for onshore wind turbines.

Blue bars show the percentage of wind turbines that face a “weak” risk of exposure, meaning that fewer than 25% of models predict that the turbine will be exposed to record-breaking wind droughts by the year 2100. Green bars indicate a “moderate” risk of 25-50% and brown bars denote “severe” risk of greater than 50%.

Each panel shows a different region of the world, with results for low (left) moderate (middle) and very high (right) warming scenarios.

Fraction of models used that predict record-breaking wind droughts for currently deployed wind turbines under different climate scenarios. Blue bars show turbines with “weak” riskgreen bars indicate a “moderate” risk and brown bars denote “severe” risk. Source: Qu et al (2025).
Fraction of models used that predict record-breaking wind droughts for currently deployed wind turbines under different climate scenarios. Blue bars show turbines with “weak” riskgreen bars indicate a “moderate” risk and brown bars denote “severe” risk. Source: Qu et al (2025).

The study finds that, globally, around 15% of wind turbines will face “severe” risk from record-breaking wind droughts by the end of the century, regardless of the future warming scenario. However, different parts of the globe are expected to face different trends.

In North America, the percentage of turbines facing a “severe” risk from such extended wind droughts in the year 2100 rises from 14% in a low warming scenario to 39% in a very high warming scenario. Europe also faces a higher risk to its wind turbines under higher emissions scenarios.

However, the trends vary across the world. In south-east Asia, for example, the percentage of wind turbines at “severe” risk of the longest wind droughts drops from 18% under a low warming scenario to 11% under a very high warming scenario.

Energy security

The planet currently has 1,136GW of wind capacity. The authors say that, according to a report by the International Renewable Energy Agency, “wind power capacity is projected to grow substantially as the world pursues decarbonisation, aiming for 6,000GW by 2050”.

The paper sets out a number of ways that energy suppliers could reduce their exposure to record-breaking wind droughts.

The authors say that developers can avoid building new turbines in areas that are prone to frequent wind droughts. They add:

“Other effective mitigation measures include complementing wind power with other renewable energy sources, such as solar, hydro, nuclear power and energy storage.”

Staffell tells Carbon Brief the study provides helpful insights for how the world’s power supply could be made less vulnerable to prolonged low-wind events:

“I don’t see this study as spelling doom for the wind industry, instead it’s a navigation tool, telling us where to expect challenges in future so that we can counteract them.”

Staffell argues that there are “many solutions” for combatting wind droughts – including building the infrastructure to enable “more interconnection” between countries’ power grids.

For example, he says the UK could benefit from connecting its grid to Spain’s, noting that “wind droughts in the UK tend to coincide with [periods of] higher wind production in Spain”.

He adds:

“Increasing flexibility and diversity in power systems is a way to insure ourselves against extreme weather and cheaper than panic-buying gas whenever the wind drops.”

Similarly, Dr Enrico Antonini, a senior energy system modeller at Open Energy Transition, who was not involved in the study, tells Carbon Brief that wind droughts “do not necessarily threaten the viability of wind power”. He continues:

“Areas more exposed to these events can enhance their resilience by diversifying energy sources, strengthening grid connections over large distances and investing in energy storage solutions.”

In a news and views piece about the new study, Dr Sue Ellen Haupt, director of the weather systems assessment programme at the University of Colorado, praises the “robust” analysis.

She says the work “would ideally be accomplished with higher-resolution simulations that better resolve terrain, land-water boundaries and smaller-scale processes”, but acknowledges that “such datasets are not yet available on the global scale”.

Meanwhile, Dr Frank Kaspar is the head of hydrometeorology at Germany’s national meteorological service. He tells Carbon Brief how additions to this study could further help energy system planning in Germany.

Kaspar tells Carbon Brief it would be helpful to know how climate change will affect seasonal trends in wind drought, noting that in Germany, wind power “dominat[es] in winter” while solar plays a larger role in the energy mix in summer. [The UK sees a similar pattern.]

He adds that the study does not address offshore wind – a component of Germany’s energy mix that is “important” for the country.

The post Climate change could make ‘droughts’ for wind power 15% longer, study says appeared first on Carbon Brief.

Climate change could make ‘droughts’ for wind power 15% longer, study says

Continue Reading

Climate Change

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Published

on

Weather disasters are shared experiences in the Maine foothills and communities are preparing for a wetter, warmer future.

The December 2023 flood. The 2022 Halloween storm. The Patriots Day storm of 2007. The Great Ice Storm of 1998.

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Continue Reading

Climate Change

Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

Published

on

In Kenya’s Laikipia County where temperatures can reach as high as 30 degrees Celsius, a local building technology is helping homes stay cooler while supporting education, creating jobs and improving the livelihoods and resilience of community residents, Climate Home News found on a visit to the region.

Situated in a semi-arid region, houses in Laikipia are mostly built with wood or cement blocks with corrugated iron sheets for roofing. This building method usually leaves the insides of homes scorching hot – and as global warming accelerates, the heat is becoming unbearable.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, lived in these harsh conditions until 2023, when the Laikipia Integrated Housing Project began in his community.

Nine of our best climate stories from 2025

The project uses compressed earth block (CEB) technology, drawing on traditional building methods and local materials – including soil, timber, grass and cow dung – to keep buildings cool in the highland climate. The thick earth walls provide insulation against the heat.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

“Especially around the months of September all the way to December, it is very, very hot [in Laikipia], but as you might have noticed, my house is very cool even during the heat,” Muthui told Climate Home News.

His school has also deployed the technology for classrooms and boarding hostels to ensure students can carry on studying during the hottest seasons of the year. This way, they are protected from severe conditions and school closures can be avoided. In South Sudan, dozens of students collapsed from heat stroke in the capital Juba earlier this year, causing the country to shutter schools for weeks.

COP30 sees first action call on sustainable, affordable housing

The buildings and construction sector accounts for 37% of global emissions, making it the world’s largest emitter of greenhouse gases, according to the UN Environment Programme (UNEP). While calls to decarbonise the sector have grown, meaningful action to cut emissions has remained limited.

At COP28 in Dubai, the United Arab Emirates and Canada launched the Cement and Concrete Breakthrough Initiative to speed up investment in the technologies, policies and tools needed to put the cement and concrete industry on a net zero-emissions path by 2050.

Canada’s innovation minister, François-Philippe Champagne, said the initiative aimed to build a competitive “green cement and concrete industry” which creates jobs while building a cleaner future.

    Momentum continued at COP30, where the Intergovernmental Council for Buildings and Climate (ICBC) held its first ministerial meeting and adopted the Belém Call for Action for Sustainable and Affordable Housing.

    Coordinated by UNEP’s Global Alliance for Buildings and Construction, the council has urged countries to embed climate considerations into affordable housing from the outset, “ensuring the drive to deliver adequate homes for social inclusion goes hand in hand with minimising whole-life emissions and
    environmental impacts”.

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    With buildings responsible for 34% of energy-related emissions and 32% of global energy demand, and 2.8 billion people living in inadequate housing, the ICBC stressed that “affordable, adequate, resource-efficient, low-carbon, climate-resilient and durable housing is essential to a just transition, the achievement of the Sustainable Development Goals and the effective implementation of the Paris Agreement”.

    Compressed earth offers local, green alternative

    By using locally sourced materials, and just a little bit of cement, the compressed earth technology is helping residents in Kenya’s Laikipia region to build affordable, climate-smart homes that reduce emissions and environmental impacts while creating economic opportunities for local residents, said Dacan Aballa, construction manager at Habitat for Humanity International, the project’s developers.

    Aballa said carbon emissions in the construction sector occur all through the lifecycle, from material extraction, processing and transportation to usage and end of life. However, by switching to compressed earth blocks, residents can source materials available in their environment, avoiding nearly all of that embedded carbon pollution.

    According to the World Economic Forum (WEF), global cement manufacturing is responsible for about 8% of total CO2 emissions, and the current trajectory would see emissions from the sector soar to 3.8 billion tonnes per year by 2050 – a level that, compared to countries, would place the cement industry as one of the world’s top three or four emitters alongside the US and China.

    Tripling adaptation finance is just the start – delivery is what matters

    Comparing compressed earth blocks and conventional materials in terms of carbon emissions, Aballa said that by using soil native to the area, the process avoids the fossil fuels that would normally have been used for to produce and transport building materials, slashing carbon and nitrogen dioxide emissions.

    The local building technology also helps save on energy that would have been used for cooling these houses as well as keeping them warm during colder periods, Aballa explained.

    Justin Atemi, water and sanitation officer at Habitat for Humanity, said the brick-making technique helps reduce deforestation too. This is because the blocks are left to air dry under the sun for 21 days – as opposed to conventional fired-clay blocks that use wood as fuel for kilns – and are then ready for use.

    Women walk passed houses in the village of Kangimi, Kaduna State, Nigeria (Photo: Sadiq Mustapha)

    Traditional knowledge becomes adaptation mechanism

    Africa’s red clay soil was long used as a building material for homes, before cement blocks and concrete became common. However, the method never fully disappeared. Now, as climate change brings higher temperatures, this traditional building approach is gaining renewed attention, especially in low-income communities in arid and semi-arid regions struggling to cope with extreme heat.

    From Kenya’s highlands to Senegal’s Sahelian cities, compressed earth construction is being repurposed as a low-cost, eco-friendly option for homes, schools, hospitals – and even multi-storey buildings.

    Senegal’s Goethe-Institut in Dakar was constructed primarily using compressed earth blocks. In Mali, the Bamako medical school, which was built with unfired mud bricks, stays cool even during the hottest weather.

    And more recently, in Nigeria’s cultural city of Benin, the just-finished Museum of West African Art (MOWA) was built using “rammed earth” architecture – a similar technology that compresses moist soil into wooden frames to form solid walls – making it one of the largest such structures in Africa.

    The post Earth blocks keep homes cool while cutting emissions in Kenya’s drylands appeared first on Climate Home News.

    Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

    Continue Reading

    Climate Change

    Using energy-hungry AI to detect climate tipping points is a paradox

    Published

    on

    David Sathuluri is a Research Associate and Dr. Marco Tedesco is a Lamont Research Professor at the Lamont-Doherty Earth Observatory of Columbia University.

    As climate scientists warn that we are approaching irreversible tipping points in the Earth’s climate system, paradoxically the very technologies being deployed to detect these tipping points – often based on AI – are exacerbating the problem, via acceleration of the associated energy consumption.

    The UK’s much-celebrated £81-million ($109-million) Forecasting Tipping Points programme involving 27 teams, led by the Advanced Research + Invention Agency (ARIA), represents a contemporary faith in technological salvation – yet it embodies a profound contradiction. The ARIA programme explicitly aims to “harness the laws of physics and artificial intelligence to pick up subtle early warning signs of tipping” through advanced modelling.

    We are deploying massive computational infrastructure to warn us of climate collapse while these same systems consume the energy and water resources needed to prevent or mitigate it. We are simultaneously investing in computationally intensive AI systems to monitor whether we will cross irreversible climate tipping points, even as these same AI systems could fuel that transition.

    The computational cost of monitoring

    Training a single large language model like GPT-3 consumed approximately 1,287 megawatt-hours of electricity, resulting in 552 metric tons of carbon dioxide – equivalent to driving 123 gasoline-powered cars for a year, according to a recent study.

    GPT-4 required roughly 50 times more electricity. As the computational power needed for AI continues to double approximately every 100 days, the energy footprint of these systems is not static but is exponentially accelerating.

    UN adopts first-ever resolution on AI and environment, but omits lifecycle

    And the environmental consequences of AI models extend far beyond electricity usage. Besides massive amounts of electricity (much of which is still fossil-fuel-based), such systems require advanced cooling that consumes enormous quantities of water, and sophisticated infrastructure that must be manufactured, transported, and deployed globally.

    The water-energy nexus in climate-vulnerable regions

    A single data center can consume up to 5 million gallons of drinking water per day – sufficient to supply thousands of households or farms. In the Phoenix area of the US alone, more than 58 data centers consume an estimated 170 million gallons of drinking water daily for cooling.

    The geographical distribution of this infrastructure matters profoundly as data centers requiring high rates of mechanical cooling are disproportionately located in water-stressed and socioeconomically vulnerable regions, particularly in Asia-Pacific and Africa.

    At the same time, we are deploying AI-intensive early warning systems to monitor climate tipping points in regions like Greenland, the Arctic, and the Atlantic circulation system – regions already experiencing catastrophic climate impacts. They represent thresholds that, once crossed, could trigger irreversible changes within decades, scientists have warned.

    Nine of our best climate stories from 2025

    Yet computational models and AI-driven early warning systems operate according to different temporal logics. They promise to provide warnings that enable future action, but they consume energy – and therefore contribute to emissions – in the present.

    This is not merely a technical problem to be solved with renewable energy deployment; it reflects a fundamental misalignment between the urgency of climate tipping points and the gradualist assumptions embedded in technological solutions.

    The carbon budget concept reveals that there is a cumulative effect on how emissions impact on temperature rise, with significant lags between atmospheric concentration and temperature impact. Every megawatt-hour consumed by AI systems training on climate models today directly reduces the available carbon budget for tomorrow – including the carbon budget available for the energy transition itself.

    The governance void

    The deeper issue is that governance frameworks for AI development have completely decoupled from carbon budgets and tipping point timescales. UK AI regulation focuses on how much computing power AI systems use, but it does not require developers to ask: is this AI’s carbon footprint small enough to fit within our carbon budget for preventing climate tipping points?

    There is no mechanism requiring that AI infrastructure deployment decisions account for the specific carbon budgets associated with preventing different categories of tipping points.

    Meanwhile, the energy transition itself – renewable capacity expansion, grid modernization, electrification of transport – requires computation and data management. If we allow unconstrained AI expansion, we risk the perverse outcome in which computing infrastructure consumes the surplus renewable energy that could otherwise accelerate decarbonization, rather than enabling it.

      What would it mean to resolve the paradox?

      Resolving this paradox requires, for example, moving beyond the assumption that technological solutions can be determined in isolation from carbon constraints. It demands several interventions:

      First, any AI-driven climate monitoring system must operate within an explicitly defined carbon budget that directly reflects the tipping-point timescale it aims to detect. If we are attempting to provide warnings about tipping points that could be triggered within 10-20 years, the AI system’s carbon footprint must be evaluated against a corresponding carbon budget for that period.

      Second, governance frameworks for AI development must explicitly incorporate climate-tipping point science, establishing threshold restrictions on computational intensity in relation to carbon budgets and renewable energy availability. This is not primarily a “sustainability” question; it is a justice and efficacy question.

      Third, alternative models must be prioritized over the current trajectory toward ever-larger models. These should include approaches that integrate human expertise with AI in time-sensitive scenarios, carbon-aware model training, and using specialized processors matched to specific computational tasks rather than relying on universal energy-intensive systems.

      The deeper critique

      The fundamental issue is that the energy-system tipping point paradox reflects a broader crisis in how wealthy nations approach climate governance. We have faith that innovation and science can solve fundamental contradictions, rather than confronting the structural need to constrain certain forms of energy consumption and wealth accumulation. We would rather invest £81 million in computational systems to detect tipping points than make the political decisions required to prevent them.

      The positive tipping point for energy transition exists – renewable energy is now cheaper than fossil fuels, and deployment rates are accelerating. What we lack is not technological capacity but political will to rapidly decarbonize, as well as community participation.

      IEA: Slow transition away from fossil fuels would cost over a million energy sector jobs

      Deploying energy-intensive AI systems to monitor tipping points while simultaneously failing to deploy available renewable energy represents a kind of technological distraction from the actual political choices required.

      The paradox is thus also a warning: in the time remaining before irreversible tipping points are triggered, we must choose between building ever-more sophisticated systems to monitor climate collapse or deploying available resources – capital, energy, expertise, political attention – toward allaying the threat.

      The post Using energy-hungry AI to detect climate tipping points is a paradox appeared first on Climate Home News.

      Using energy-hungry AI to detect climate tipping points is a paradox

      Continue Reading

      Trending

      Copyright © 2022 BreakingClimateChange.com