Connect with us

Published

on

What is Carbon Capture and Storage? Your Ultimate Guide to CCS Technology

Carbon capture and storage (CCS) is moving from niche pilot projects to a global climate strategy worth billions. Once seen as a backup plan, it’s now racing to the forefront — from massive U.S. industrial hubs to China’s fast-expanding carbon pipelines. Supporters call it essential for tackling the world’s toughest emissions in steel, cement, and energy. Critics warn it could be a costly detour.

As governments, investors, and big tech pour money into CCS, one question looms: can it deliver the deep carbon cuts needed to hit net zero by 2050?

This guide walks you through everything you need to know: how CCS works, the latest technologies, the biggest projects and market leaders, and where the fastest growth is happening. 

We’ll also explore market trends, policy drivers, corporate demand, and the risks investors should watch. Whether you’re new to CCS or tracking it as a climate tech opportunity, this resource covers the science, the strategy, and the business potential shaping the future of carbon removal.

What is Carbon Capture and Storage (CCS)?

Carbon Capture and Storage is a climate technology designed to prevent carbon dioxide (CO₂) from entering the atmosphere. It captures CO₂ emissions from places like power plants, cement factories, and steel mills. This happens before the emissions can add to global warming.

A related term is Carbon Capture, Utilization, and Storage (CCUS). It takes things further by using captured CO₂ in products like synthetic fuels, building materials, or plastics.

The key difference between CCS and CCUS lies in the “U” — utilization. In CCS, the captured CO₂ is permanently stored underground, while in CCUS, part or all of that CO₂ is repurposed for industrial use before storage.

This technology helps fight climate change. It can reduce emissions from hard-to-decarbonize industries. The Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA) both recognize CCS as a critical tool for achieving net-zero targets.

Global climate agreements, like those at the annual UN Climate Change Conferences (COP), stress that CCS is key to limiting global temperature rise to below 1.5°C.

How Carbon Capture Works: A Step-by-Step Process

CCS works in three main stages — capture, transport, and storage — with an optional fourth step for utilization. Let’s break down each one of them. 

CCUS process
Source: Shutterstock
  1. Capture: The process starts by separating CO₂ from other gases produced during industrial processes or electricity generation. This can be done at power plants, cement kilns, oil refineries, and other facilities. Special chemical solvents, membranes, or advanced filters are used to remove CO₂ from flue gas or fuel before combustion.
  2. Transport: Once captured, CO₂ must be moved to a storage or utilization site. The most common method is through high-pressure pipelines. In some cases, ships or even trucks carry CO₂ over long distances, especially if storage sites are far from industrial hubs.
  3. Storage: For permanent storage, CO₂ is injected deep underground into geological formations such as saline aquifers or depleted oil and gas fields. These sites are chosen for their ability to trap CO₂ securely for thousands of years, with monitoring systems in place to detect any leaks.
  4. Utilization: In CCUS projects, some or all of the captured CO₂ is reused instead of being stored immediately. It can be converted into synthetic fuels, used in making cement and plastics, or even injected into greenhouses to boost plant growth. While utilization does not always result in permanent storage, it can reduce the need for fossil-based raw materials.

Tech Toolbox: The Many Ways of Capturing Carbon

CCS is not a single technology. Different methods are used depending on the type of facility, the fuel being used, and the stage at which CO₂ is removed. The main types are:

Post-combustion capture: This is the most common method today. CO₂ is removed from the exhaust gases after fuel has been burned. Chemical solvents or filters separate the CO₂ from other gases before it is compressed for transport.

Pre-combustion capture: Here, the fuel is treated before it is burned. The process converts the fuel into a mixture of hydrogen and CO₂. The CO₂ is separated and stored, while the hydrogen can be used to produce energy without direct emissions.

Oxy-fuel combustion: In this method, fuel is burned in pure oxygen instead of air. This creates a stream of exhaust that is mostly CO₂ and water vapor, making it easier to capture the CO₂.

Direct Air Capture (DAC): DAC removes CO₂ from the air instead of just one source. It uses big fans and chemical filters to do this. It can be used anywhere but requires more energy because CO₂ in the air is less concentrated.

As of end-2024, around 53 DAC plants were expected to be operational globally, rising to 93 by 2030 with a capacity of 6.4–11.4 MtCO₂/year. 

Bioenergy with CCS (BECCS): This approach combines biomass energy production with carbon capture. Plants absorb CO₂ while growing, and when the biomass is burned for energy, the emissions are captured and stored. This can result in “negative emissions,” removing CO₂ from the atmosphere.

Global Race: Which Countries Are Winning CCS Leadership

Carbon capture and storage is now a reality. It’s in operation in many countries, with numerous projects either planned or being built. CCS technology is still new compared to global emissions. But momentum is growing.

Governments, industries, and investors are now committing to large-scale deployment. CCS capacity differs between regions:

ccs capacity by region

United States

The U.S. leads CCS deployment, holding about 40% of global operational capacity. By mid-2024, facilities captured roughly 22–23 Mt CO₂ annually. Growth is driven by the expanded 45Q tax credit under the Inflation Reduction Act, rewarding storage and utilization. Flagship projects include Petra Nova in Texas and Midwest CCS hubs serving ethanol, fertilizer, and industrial sites.

Canada

Canada hosts pioneering projects like Boundary Dam (the world’s first commercial coal CCS) and Quest in Alberta, capturing CO₂ from hydrogen linked to oil sands. National capacity is ~4 Mt per year, supported by a federal CCS investment tax credit targeting heavy industry and clean hydrogen. 

Norway

Norway has led offshore CO₂ storage since the Sleipner project began in 1996, injecting ~1 Mt annually into a saline aquifer. The Northern Lights project, part of Longship, will create a shared CO₂ transport and storage network for European industries.

China

China’s CCS capacity grew from ~1 Mt/year in 2022 to over 3.5 Mt in 2024, mainly in coal-to-chemicals, gas processing, and EOR. CCS is now part of national climate strategies, signaling rapid expansion.

United Kingdom

The UK’s cluster model links industries via shared pipelines and offshore storage. The East Coast Cluster and HyNet, due late 2020s, could together capture over 20 Mt CO₂ annually.

Australia

Australia’s ~4 Mt/year capacity includes the massive Gorgon gas-linked CCS facility in Western Australia, despite operational setbacks. With vast geological storage potential, the country aims to be a CO₂ storage hub for Asia’s export industries.

Wood Mackenzie

Total Operational Capacity and Growth

As of 2024, global CCS facilities in operation had a combined capture capacity of just over 50 million tonnes of CO₂ per year. This shows steady growth, up from about 40 Mt a few years ago. However, it still accounts for just a small part of the over 40 billion tonnes of CO₂ emitted worldwide each year.global ccs capacity growth

However, the project pipeline is expanding quickly. The facilities being built will double the current capacity. Early development projects might raise global capacity to over 400 million tonnes per year by the early 2030s if they stay on track.

The Rise of CCS Hubs and Clusters

A key trend in the industry is the creation of CCS hubs—shared infrastructure networks where multiple companies use the same transport and storage systems. This model lowers costs and speeds up deployment by avoiding the need for every facility to build its own pipeline or storage site.

The U.S. Midwest ethanol corridor, Norway’s Northern Lights, and the UK’s industrial clusters are among the most advanced examples. These hubs usually form close to industrial areas. Here, emissions are high, and the current infrastructure, like pipelines and ports, can be adjusted for CO₂ transport.

Why CCS Matters in the Climate Fight

Carbon capture and storage is not meant to replace renewable energy or other climate solutions. Instead, it focuses on the toughest parts of the emissions problem—places where cutting CO₂ is especially hard or expensive. Experts call these hard-to-abate sectors.

Hard-to-Abate Sectors

Some industries can’t simply switch to clean electricity. For example, making steel requires very high heat and chemical reactions that release CO₂. Cement production also releases CO₂ as a byproduct of making clinker, the key ingredient in concrete.

Chemical plants and refineries have complex processes that generate large amounts of CO₂. Even aviation faces limits, since planes can’t yet fly long distances on batteries alone. CCS can capture emissions from these sources. This helps reduce climate impact while keeping production running.

Here is the technology’s application in various industries:

ccs by industry application

Role in Meeting the 1.5°C Target and Net-Zero by 2050

To avoid the worst effects of climate change, scientists say global warming must be kept to 1.5°C above pre-industrial levels. That means reaching net-zero emissions by around 2050. 

The Intergovernmental Panel on Climate Change (IPCC) has run hundreds of models to see how this can be done. In most scenarios, CCS plays a key role. Without it, the cost of meeting climate targets could rise by 70% or more, because other solutions would have to carry the full load.

global carbon emissions captured with CCS

Synergies with Clean Hydrogen, Carbon Markets, and Industrial Strategy

CCS also works well with other low-carbon solutions. CCS captures CO₂ that would escape when producing clean hydrogen, especially “blue hydrogen” from natural gas. This creates a cleaner fuel for use in transport, heating, and industry.

In carbon markets, CCS can generate credits for each tonne of CO₂ captured and stored. These credits can be sold to companies looking to offset their emissions. Governments are also linking CCS to industrial strategy by building shared hubs and pipelines. These will serve multiple factories, power plants, and fuel producers. This makes CCS cheaper and faster to deploy.

Endorsements from the IEA and UN

The International Energy Agency (IEA) calls CCS “critical” for reaching net zero, especially in heavy industry. It estimates the world will need to store 1.2 billion tonnes of CO₂ each year by 2050.

The United Nations also recognizes CCS in its climate plans. It has been featured in multiple COP agreements as a key technology for both reducing emissions and removing CO₂ from the atmosphere. These endorsements matter because they help drive policy support, funding, and international cooperation.

CCS Investment and Financing: How Much Does It Cost?

Carbon capture and storage can make a big impact on emissions. But it comes with a high price tag. Most projects cost between $50 and $150 for every tonne of CO₂ (and even over $400 for some technologies) captured and stored.

The lower end usually applies to large industrial sites near storage locations. The higher end often applies to smaller or more complex projects, or those that require long transport pipelines.

DNV_CCS_forecast_2050_transport_and_storage_costs_in_EUR_and_NAM

Government Support

Governments play a key role in making CCS affordable. In the U.S., the 45Q tax credit offers up to $85 per tonne for CO₂ stored underground and $60 per tonne for CO₂ used in other industrial processes.

Canada provides an Investment Tax Credit (ITC) covering up to 50% of eligible CCS costs. In Europe, the Innovation Fund supports early-stage CCS and other low-carbon projects, offering billions in grants.

Blended Finance and Partnerships

Because CCS is expensive, many projects rely on blended finance—a mix of public and private funding. Oil and gas companies invest in cutting carbon emissions. Meanwhile, governments help by offering grants and tax breaks.

Public-private partnerships are common, especially for shared CCS hubs where multiple companies use the same pipelines and storage sites. International lenders, such as the World Bank and the Asian Development Bank, are funding CCS in emerging economies.

Voluntary Carbon Market (VCM)

CCS can also generate carbon removal credits for sale in the voluntary carbon market. These credits are purchased by companies aiming to offset their emissions.

While VCM prices vary, high-quality removal credits often sell for $100 per tonne or more, making them a potential revenue stream for CCS operators. Market demand for CCS-based credits is still growing. It relies on trust in the technology’s monitoring and verification.

Investor Angle: How to Invest in the CCS Industry

Interest in carbon capture and storage is rising among ESG, climate tech, and energy transition investors. The global CCS market was valued at about $4.5 billion in 2023 and could grow to more than $20 billion by 2033, according to industry forecasts. This growth is being driven by stricter climate policies, corporate net-zero pledges, and rising carbon prices.

Public Stocks

Investors can buy shares in companies directly involved in CCS. Examples include Aker Carbon Capture (Norway), Occidental Petroleum (U.S.), Air Liquide (France), and ExxonMobil.

Many oil and gas majors now see CCS as essential to keeping their assets viable in a low-carbon future. These firms are investing billions in CCS hubs and carbon removal partnerships.

Private Startups

Private markets offer exposure to emerging technologies like DAC. Leading firms include Climeworks (Switzerland), CarbonCapture (U.S.), and Heirloom (U.S.).

DAC projects are smaller today but attract premium interest from tech backers and climate-focused venture capital. In 2022 alone, DAC startups raised over $1 billion in funding.

ETFs and Funds

There are also climate-focused ETFs and funds that include carbon removal technologies as part of their portfolios. These funds reduce risk by investing in various companies. They focus on CCS, renewable energy, hydrogen, and other low-carbon solutions.

Carbon Credit Markets

Some investors buy into CCS through the carbon credit market. This can be done by funding CCS or DAC projects that issue carbon removal credits.

Platforms like Puro.earth and CIX (Climate Impact X) connect investors with verified carbon removal projects. Credits from high-quality CCS projects can fetch $100–$200 per tonne depending on location and verification standards.

Due Diligence

Before investing, it is important to check policy risk, technology readiness, cost curves, and scalability. CCS works best in large industrial hubs with access to geological storage.  Finally, watch these key sectors because they will likely drive demand and scale for CCS: 

  • The oil & gas sector uses CCS for enhanced oil recovery and to lower its emissions. 
  • Cement firms need CCS because their production process emits CO₂ that can’t be avoided easily. 
  • Hydrogen—especially blue hydrogen—depends on CCS to cut its carbon footprint. 
  • DAC startups aim to remove CO₂ directly from the air and may sell high-value removal credits. 
  • And carbon marketplaces and registries will shape how removal credits are priced and trusted.

These areas have the most potential to scale quickly as policies tighten and carbon prices rise.

Risks, Challenges, and Criticism of CCS

While CCS has strong potential as a climate solution, it faces several challenges that investors, policymakers, and project developers must consider.

  • High Capital Costs and Slow ROI: Large CCS projects cost hundreds of millions to billions of dollars. At $50–$150 per tonne captured, returns depend on strong policy support, carbon pricing, or premium credits, with payback periods often spanning years.
  • Energy Requirements and Lifecycle Emissions: CCS uses significant energy, sometimes from fossil fuels. Without low-carbon power, net emissions savings shrink, making efficiency improvements essential.
  • Storage Risks: Leakage, Permanence, and Monitoring: Geological storage is generally safe, but leakage is possible. Continuous monitoring ensures CO₂ remains underground for centuries.
  • Debate Over Fossil Fuel Dependency vs. Genuine Decarbonization: Critics say CCS can prolong fossil fuel use. Supporters argue it’s vital for industries like cement and steel.
  • Policy Uncertainty and Lack of Global Standards: Policy changes can undermine project economics. The absence of global CO₂ measurement standards adds risk to cross-border investments.

Market Outlook (2024–2030): What’s Next for CCS?

The world is gearing up for a big expansion in carbon capture and storage. But just how fast will CCS grow—and what could power that growth?

ccs pipeline projects

Growing CCS Pipeline and Capacity

Momentum is clearly building. The Global CCS Institute reports a record 628 projects in the pipeline—an increase of over 200 from the previous year.

The expected annual capture capacity from these projects is 416 million tonnes of CO₂. This amount has been growing at a 32% rate each year since 2017. Once the current construction is completed, operational capacity is set to double to more than 100 Mt per year.

Similarly, the IEA sees global capture capacity rising from roughly 50 Mt/year today to about 430 Mt/year by 2030, with storage capability reaching 670 Mt/year.

Still, this is only a start. To meet global climate goals, CCS will need to scale much more, lasting into the billions of tonnes annually.

Policies Fueling Momentum

Governments are shoring up policy support to accelerate CCS rollout. Here are the regional trends so far:

  • In the U.S., the Inflation Reduction Act (IRA) expanded the 45Q tax credit—making CCS more financially appealing for project developers.
  • The EU’s Net-Zero Industry Act and updated Industrial Carbon Management Strategy aim to help the region capture at least 50 Mt by 2030, rising to 280 Mt by 2040.
  • Across the Asia-Pacific, countries like Australia are positioning themselves as carbon storage hubs. With strong geology and policy backing, Australia could generate over US$500 billion in regional carbon storage revenue by 2050.

Corporate Buyers Powering Demand

Major companies are not just talking—they’re signing deals:

  • Microsoft stands out as a leading buyer of carbon removal credits. It has contracted close to 30 million tonnes. This includes 3.7 million tonnes over 12 years with startup CO280 and 1.1 million tonnes in a 10-year deal with Norway’s Hafslund Celsio project.
  • Shopify co-founded Frontier—a $925 million advance market commitment—with other big names like Stripe and Alphabet. It has also purchased over $80 million in carbon removal from startups using DAC, enhanced weathering, and other technologies.

These corporate purchases show a strong demand for CCS-backed removal credits. They also help build a stable market for project developers.

Carbon Pricing, ESG Rules, and Global Markets

CCS is also benefiting from broader climate market trends:

  • Carbon pricing and trading systems globally are starting to include CCS credits. As prices rise, CCS projects can improve their economics.
  • ESG reporting and net-zero commitments are increasing transparency and accountability. Firms are expected to show real results—CCS helps deliver that.
  • The rise of international carbon markets and registries is creating standardized ways to value and certify carbon removals. This makes CCS credits more trustworthy and investable.

Quick Take

By 2030, CCS capacity could rise eightfold—from 50 million to over 400 million tonnes. This growth is being driven by government policy, big corporate offtake deals, and a maturing carbon credit market. While still far from what’s needed to fully tackle climate change, the CCS sector is clearly moving from pilot stage to commercial reality

The Role of CCS in a Net-Zero Future

CCS isn’t a silver bullet. It’s a vital tool that works with renewables, electrification, and nature-based solutions like reforestation.

Renewables stop future emissions. CCS tackles the emissions that still exist, especially from old infrastructure in steel, cement, and chemicals. These are costly and slow to replace. 

CCS captures emissions at the source. This helps extend facility lifespans and supports climate goals. It’s especially important for economies with new industrial assets.

CCS growth 2050

Beyond reduction, CCS can enable permanent carbon removal through direct air capture and bioenergy with CCS, storing CO₂ underground for centuries. These methods can offset hard-to-abate sectors such as aviation and agriculture.

Responsible deployment is key. It needs strong MRV standards, community engagement, and alignment with sustainability goals. This helps avoid delays in phasing out fossil fuels.

CCS, when used wisely, connects our current fossil fuel economy to a low-carbon future. It helps reduce emissions we can’t fully eliminate yet and gives us time to develop cleaner technologies.

CCS is Not a Silver Bullet—But a Vital Tool

Carbon capture and storage is not a cure-all for the climate crisis. No single technology can deliver net zero on its own, and CCS should be viewed as one tool in a broader decarbonization toolkit. 

A balanced approach requires acknowledging both the potential and the limitations of CCS. The technology can cut emissions and even remove carbon permanently when it’s based on solid science, strong policies, and clear reporting.

However, overreliance or misuse—particularly if it delays the shift away from fossil fuels—risks undermining climate goals.

The pathway to net zero will demand a combination of innovation, investment, and urgency. Carbon capture and storage is part of that solution set, and with careful governance, sustained funding, and clear standards, it can help bridge the gap between today’s emissions reality and the low-carbon future we urgently need.

The post What is Carbon Capture and Storage? Your Ultimate Guide to CCS Technology appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Google Locks In 100 MW of Offshore Wind to Power Europe’s AI Growth

Published

on

Google Locks In 100 MW of Offshore Wind to Power Europe’s AI Growth

Google has signed a long-term offshore wind power deal in Germany as it expands artificial intelligence and cloud infrastructure across Europe. The agreement is a 15-year power purchase agreement (PPA) with German utility EnBW. It covers 100 megawatts (MW) of electricity from the He Dreiht offshore wind farm in the North Sea.

The deal links Google’s growing electricity demand directly to new renewable generation. It also reflects a wider shift among large technology firms toward long-term clean power contracts tied to specific projects.

Adam Elman, Director of Sustainability EMEA at Google, remarked:

“Meeting the demand for AI infrastructure requires direct investment in the energy systems that make this technology possible. By contracting for new wind power from EnBW, we are bringing more clean energy online in Germany to power our operations, while accelerating the broader transition to a more sustainable electricity grid.”

AI Is Turning Electricity Into a Strategic Asset

According to EnBW, the He Dreiht wind farm will have a total capacity of 960 MW. It will use 64 offshore wind turbines and is expected to connect to the grid by spring 2026. The site is located around 90 kilometers northwest of Borkum and 110 kilometers west of Helgoland.

For Google, the agreement supports its goal of operating on 24/7 carbon-free energy by 2030. This means matching electricity use with carbon-free power every hour of the day, not just on an annual basis.

Google’s power demand is rising quickly. The main driver is artificial intelligence. AI systems need large amounts of computing power, which in turn requires large amounts of electricity.

The International Energy Agency (IEA) estimates that data centers used about 415 terawatt-hours (TWh) of electricity in 2024. That equals around 1.5% of global electricity demand. The IEA also notes that data center demand has grown at a double-digit annual rate in recent years. The same trend is forecasted by an industry report, as shown below.

AI data center energy GW 2030

Germany plays a key role in Google’s European expansion. In late 2025, Google announced plans to invest €5.5 billion in the country between 2026 and 2029. The investment includes a new data center in Dietzenbach, near Frankfurt, and continued development of its Hanau data center campus, which opened in 2023.

Data centers need reliable power around the clock. They also face rising pressure from governments, investors, and customers to reduce emissions. Long-term renewable PPAs help companies manage both issues.

By signing a 15-year contract, Google gains price certainty and supply stability. At the same time, the contract helps EnBW finance a large offshore wind project that adds new clean electricity to Germany’s grid.

A Flagship Wind Farm in the North Sea

Germany already has one of Europe’s largest offshore wind fleets. By the end of 2024, the country had 31 offshore wind farms fully in operation. Installed offshore wind capacity reached about 9.2 gigawatts (GW) in total. Around 7.4 GW sits in the North Sea, while about 1.8 GW is in the Baltic Sea.

He Dreiht is one of the largest offshore wind projects currently under construction in Germany. With 960 MW of capacity, it will add a meaningful share to the national total once it comes online.

The project also reflects a broader trend toward larger offshore turbines. According to industry data, offshore turbines commissioned in Germany in 2024 had an average capacity of 10.2 MW. The first 11 MW turbine entered operation that year, and 15 MW turbines are expected to appear in German waters starting in 2025.

offshore wind energy Germany map
Source: Deutsche WindGuard

Larger turbines can generate more electricity with fewer units. This can reduce seabed disturbance and installation time. However, it also requires stronger foundations, larger vessels, and more robust grid connections.

For EnBW, He Dreiht is a flagship project. The utility has already signed multiple PPAs for the wind farm with corporate buyers. This shows how offshore wind developers are increasingly relying on long-term corporate demand alongside traditional utility customers.

Why Corporates Are Becoming Power Buyers

Power purchase agreements play a growing role in clean energy finance. A PPA is a contract where a buyer agrees to purchase electricity from a specific project at agreed terms over many years.

For developers, PPAs reduce financial risk. They help secure loans and attract investors by offering predictable revenue. For buyers, PPAs provide access to clean power without owning generation assets.

This model is becoming more common as electricity demand rises and clean energy targets tighten. The IEA reports that global energy investment exceeded $3 trillion in 2024 for the first time. Around $2 trillion of that went into clean energy technologies and infrastructure, including renewables, grids, and storage.

Europe is a key market in this shift. Offshore wind plays a major role because it can produce large volumes of electricity close to industrial and urban centers. Germany plans to keep expanding offshore wind as part of its long-term energy strategy. It plans to expand grid-connected offshore wind power capacity to at least 30 gigawatts by 2030, 40 gigawatts by 2035, and 70 gigawatts by 2045.

Germany offshore wind capacity additions 2034
Source: Deutsche WindGuard

Corporate PPAs like Google’s agreement with EnBW help speed up this build-out. They send clear demand signals to developers and help reduce reliance on government subsidies.

From Annual Offsets to 24/7 Clean Power

Google’s long-term climate strategy goes beyond buying renewable energy certificates. The company aims to operate on 24/7 carbon-free energy in every region where it runs data centers and offices.

Google carbon-free energy goal 2030
Google’s Carbon-Free 2030 Goal

This approach focuses on real-time matching. It encourages a new, clean generation in the same places where electricity is used. Offshore wind PPAs fit well into this strategy in coastal countries like Germany.

Still, a 100 MW contract covers only part of Google’s total electricity needs. Large data centers can consume hundreds of megawatts on their own. As AI workloads grow, total demand could rise further.

That means Google will likely need a mix of solutions. These may include additional wind and solar PPAs, energy storage, grid upgrades, and partnerships with utilities and governments.

SEE MORE on Google:

Google’s clean energy buying reached a new scale in 2024, as rising AI and digital demand pushed electricity use higher. The company signed contracts for over 8 gigawatts (GW) of new clean energy this year. This is its largest annual procurement ever and double the amount from 2023.

Since 2010, Google has secured over 22 GW of clean energy through more than 170 agreements. This amount is about the same as Portugal’s total renewable power output in 2024. More than 25 projects came online in 2024 alone, adding 2.5 GW of new generation.

Despite a 27% rise in electricity use, Google cut data center energy emissions by 12%. This shows how clean energy purchases support its goal to run on 24/7 carbon-free energy by 2030.

Google data center energy use

The EnBW agreement shows one way forward. It ties new AI infrastructure directly to new renewable supply. It also spreads investment risk between a technology company and a utility.

Big Tech Is Reshaping How Power Gets Built

Google’s 15-year offshore wind deal highlights a broader shift in how clean energy projects are financed and used. Large corporate buyers are no longer just passive consumers of electricity. They are becoming active players in energy markets.

For Germany, the deal supports offshore wind expansion at a time when power demand is rising from electrification, industry, and digital services. For EnBW, it provides long-term revenue certainty, and for Google, it helps align AI growth with climate goals.

The next phase will test execution, but the direction is clear. As AI drives electricity demand higher, long-term renewable contracts are becoming a central part of energy planning. Google’s offshore wind agreement in Germany is one of the clearest examples of how these trends are coming together.

The post Google Locks In 100 MW of Offshore Wind to Power Europe’s AI Growth appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

How BYD’s European Surge and Canada Deal Are Challenging Tesla’s EV Dominance

Published

on

Chinese electric vehicle (EV) giant BYD is accelerating its global expansion, especially in Europe and Canada. In contrast, Tesla is losing ground across key markets. New sales data, policy shifts, and geopolitical deals suggest a major shift in the EV landscape.

This trend matters not just for automakers. It also impacts battery metals, supply chains, carbon markets, and the future of clean mobility.

BYD’s Germany Boom Marks Europe’s EV Shake-Up

BYD recorded a dramatic surge in German sales in January 2026. Bloomberg highlighted data from Germany’s Federal Motor Transport Authority (KBA) showing that BYD’s registrations jumped more than 10-fold from January 2025. The company sold only 235 vehicles in Germany last year, but recent data suggests sales likely exceeded 2,500 units.

Meanwhile, Tesla struggled. BYD more than doubled Tesla’s registrations in Germany during the same month.

Overall, car sales in Germany declined 6.6% to 193,981 vehicles in January. However, electric cars still accounted for 22% of new registrations, highlighting strong demand for EVs despite a weak auto market. This surge shows that BYD’s low-cost models and expanding lineup are gaining traction in Europe’s largest automotive market.

Significantly, the German numbers reflect a broader European trend. Throughout 2025, BYD recorded more than 200% year-on-year growth in many months. In December 2025 alone, its European registrations reached 27,678 units—up nearly 230%.

byd europe
Source: ElectricVehicles.com

Breakthrough in Spain

Spain emerged as another key battleground. BYD dominated the Spanish EV and plug-in hybrid market in January 2026.

  • The company registered 1,962 vehicles, a 64.6% year-on-year increase. It captured a 13.6% market share, leading both fully electric and plug-in hybrid segments.
  • Fully electric sales rose nearly 30% to 1,039 units, putting BYD ahead of Kia and Mercedes-Benz. Tesla ranked fourth, with only 458 fully electric vehicles sold.

Spain’s performance highlights BYD’s strategy of combining affordable EVs with hybrids to capture diverse buyers.

Notably, BYD also sold 1,326 battery-electric vehicles in the UK, marking a nearly 21% increase from the previous year.

Tesla’s European Sales Collapse Deepens

Tesla, on the other hand, saw sales decline every month in Europe during 2025. The trend continued into 2026. Its struggles were especially visible in Northern and Western Europe.

In five major European markets, Tesla’s registrations fell 44% year-over-year in January. This marked the third consecutive year of shrinking sales across the region.

  • Norway: Registrations collapsed by 88%, with only 83 vehicles sold.
  • Netherlands: Sales dropped 67%.
  • France: Registrations fell 42% to 661 vehicles, the lowest in over three years.
  • United Kingdom: Sales plunged more than 57% to just 647 vehicles.

Policy changes played a role. Norway reduced EV tax incentives starting January 1, which hurt Tesla demand. However, the scale of the decline surprised analysts.

Even in Sweden and Denmark, where Tesla saw sales rise by 26% and 3%, the total number of cars sold remains low. These minor gains do little to offset the sharp decline compared with two years ago.

TESLA europe

Analysts believe that one key issue is Tesla’s aging lineup. The Model Y, once a top seller, is now over four years old, and buyers are looking for newer options. Although Tesla launched more affordable “Standard” versions of the Model Y and Model 3, these updates have not been enough to reverse the downward trend.

In the current scenario, Tesla is not only losing ground to Chinese brands. European automakers are also regaining market share. Volkswagen overtook Tesla in 2025 to become Europe’s top-selling EV brand. It sold around 274,000 units, compared to Tesla’s 235,000.

This shows Europe’s EV market is becoming more competitive, with local manufacturers and Chinese brands challenging Tesla’s early dominance.

tesla byd europe
Source: CNeV

Canada Opens the Door to Chinese EVs

Europe is not the only region where BYD is gaining ground. Prime Minister Mark Carney signed a landmark trade agreement with China on January 16, 2026. This deal allows Chinese-made EVs to enter the market at low tariffs.

  • So Canada will allow up to 49,000 Chinese EVs annually at a tariff rate of 6.1%. This marks a sharp reversal from the 100% tariff imposed in October 2024.

Also, the quota could rise to about 70,000 vehicles within five years. By 2030, at least half of imported Chinese EVs must be priced below CAD 35,000. In exchange, China agreed to reduce tariffs on Canadian canola seed, improving agricultural trade relations.

PM Carney said,

“At its best, the Canada-China relationship has created massive opportunities for both our peoples. By leveraging our strengths and focusing on trade, energy, agri-food, and areas where we can make huge gains, we are forging a new strategic partnership that builds on the best of our past, reflects the world as it is today, and benefits the people of both our nations.” 

BYD Gains a Regulatory Edge in Canada

BYD holds a unique advantage in Canada. Its manufacturing facilities in Shenzhen and Xi’an are already approved for Canadian imports. This pre-clearance gives BYD a head start over rivals like NIO, XPeng, and Li Auto. However, other Chinese brands must wait for regulatory approvals or rely on slower case-by-case processes.

BYD also operates an electric bus assembly plant in Ontario, strengthening its local presence. Furthermore, affordable models like the Seagull and Dolphin, priced between $20,000 and $30,000, could qualify under Canada’s affordability requirements.

Political Backlash and U.S. Concerns

The Canada-China EV deal triggered political controversy. Ontario Premier Doug Ford initially urged Canadians to boycott Chinese EVs, warning the agreement could hurt domestic manufacturing.

Labor unions and automakers also expressed concern. They fear the deal could weaken North America’s automotive industry and strain U.S.-Canada trade relations.

As per reports, U.S. President Donald Trump threatened tariffs on Canadian goods if the deal moves forward, calling it a “disaster.” However, Canadian officials argue the agreement aligns with USMCA rules and will expand the EV market.

Analysts estimate Chinese EVs could capture around 23% of Canada’s EV sales in the first year, saving consumers about CAD 6,700 per vehicle.

Canada EV
Source: S&P Global

Stock Market Snapshot: BYDDY vs TSLA

BYD’s (BYDDY) stock trades around $11.28 per share, with a market cap of roughly $102 billion. The stock is near the lower end of its 52-week range, reflecting margin pressures and geopolitical risks.

byddy stock
Source: Yahoo Finance

Tesla’s (TSLA) stock trades near $406 per share, with a market cap of about $1.35 trillion. Analysts expect a volatile 2026, with forecasts ranging widely depending on EV demand and margins.

tesla TSLA
Source: Yahoo Finance

Despite Tesla’s valuation premium, BYD’s rapid sales growth is reshaping investor sentiment.

The Bigger Picture: A Global EV Power Shift

BYD’s rapid rise shows how the EV industry is changing. Chinese automakers are using scale, government support, and efficient production to challenge Western rivals. At the same time, Tesla remains strong in technology, software, and brand recognition. Yet, price competition and shifting policies are reshaping the market.

In Europe, declining subsidies, along with Canada’s new trade rules and ongoing geopolitical tensions, are affecting EV adoption and corporate strategies. As BYD gains ground in Germany, Europe, and Canada, it signals a turning point in the global EV race. Tesla’s falling sales highlight the increasing pressure from both Chinese and European competitors.

For investors, policymakers, and climate advocates, these trends matter. They will influence battery supply chains, emissions targets, and the demand for carbon credits. The EV transition is no longer led by a single company—today, it has become a global contest for scale, affordability, and sustainable leadership.

The post How BYD’s European Surge and Canada Deal Are Challenging Tesla’s EV Dominance appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Walmart Hits $1 Trillion Milestone And Its Climate Footprint Just Got Bigger

Published

on

Walmart Hits $1 Trillion Milestone And Its Climate Footprint Just Got Bigger

Walmart has crossed a historic financial mark. It became the first traditional retailer to reach a $1 trillion market value, a level previously limited to technology and energy giants.

The milestone followed a strong move in the company’s share price. During recent trading in New York, Walmart’s stock rose by about 1.6% and hit an intraday high of around $126 per share.

That gain pushed the Bentonville, Arkansas-based retailer past the trillion-dollar threshold. Since the start of the year, Walmart’s stock has been up about 12%, far ahead of the S&P 500, which has gained less than 2% over the same period.

Walmart WMT stock price

Investors have responded to Walmart’s steady revenue growth, digital expansion, and cost control. At the same time, the company has continued to expand its environmental and climate commitments. Given Walmart’s size, those efforts carry weight across global supply chains.

Big Targets for an Even Bigger Footprint

Walmart has set long-term climate targets that cover its own operations and its value chain. The company aims to reach zero greenhouse gas emissions across global operations by 2040, without using carbon offsets. It also plans to source 100% renewable electricity by 2035.

These targets apply to Scope 1 and Scope 2 emissions. Scope 1 includes direct emissions from company operations. Scope 2 covers emissions from purchased electricity. Walmart’s strategy includes improving energy efficiency, switching to low-impact refrigerants, and electrifying parts of its vehicle fleet.

walmart emissions WMT stock
Source: Walmart

Most of Walmart’s emissions sit outside its direct control. Like many large retailers, the bulk of its footprint comes from suppliers, logistics, and product use. To address this, Walmart launched Project Gigaton in 2017. The program set a goal to avoid, reduce, or remove one billion metric tons of greenhouse gas emissions from the global value chain by 2030.

Walmart gigaton project goals
Source: Walmart

Progress Made, Deadlines Slipping

Walmart’s reporting shows clear progress in several areas.

On clean power, the company said that nearly half of its global electricity use now comes from renewable sources. This includes on-site generation and long-term power purchase agreements tied to wind and solar projects. These steps move Walmart closer to its 2035 renewable energy target.

On emissions, Walmart has reduced Scope 1 and Scope 2 emissions by about 18% compared with its 2015 baseline. During this time, the company cut carbon intensity by 45%. This means it emits less for each unit of business activity.

Project Gigaton has also delivered results. Walmart announced it hit its one-billion-ton emissions reduction goal six years early, 1.19 billion metric tons of CO₂e. Over 5,900 suppliers joined in. They helped cut down on energy use, packaging, transportation, and waste.

Walmart project gigaton progress
Source: Walmart

Still, the path to net zero is not smooth. Walmart has admitted that it probably won’t meet its interim goals. These include reducing Scope 1 and 2 emissions by 35% by 2025 and 65% by 2030, based on 2015 levels. The company has pushed those timelines further out as it faces technical and operational limits.

Where Most Emissions, and Leverage, Live

Supply chains remain Walmart’s biggest climate challenge. In retail, Scope 3 emissions often account for the vast majority of total emissions. Industry research shows that for large retailers, supply chain emissions can make up as much as 90% to 98% of total carbon output.

Walmart scope 3 emissions 2024

Project Gigaton targets this gap. It asks suppliers to set goals in six areas, including energy, waste, packaging, agriculture, and logistics. Many suppliers focus on energy efficiency and renewable power, while others work on sustainable sourcing and transport optimization.

With that initiative, emissions intensity in Scope 3 has dropped by about 6.2% since 2022. This shows progress in lowering the carbon intensity of the wider supply chain.

Beyond emissions, Walmart has expanded work on waste reduction and responsible sourcing. The company promotes circular economy practices, aims to cut food waste, and supports sustainable agriculture across key commodities. These efforts link climate goals with land use, water, and biodiversity outcomes.

Transport innovation:

Walmart is investing in new technologies to reduce emissions in transport and logistics. They are focusing on heavy-duty electric vehicles and hydrogen fuel cell forklifts. This comes as transportation emissions have recently increased because Walmart decided to bring more fleet operations in-house.

Refrigerant upgrades:

The retailer is replacing high-impact refrigerants with lower global warming potential systems. This effort contributed to a 2.4% decrease in refrigerant emissions in 2024, aided by preventive maintenance and specialized technician training.

Packaging challenges and circularity:

Walmart is working to increase recycled content in private-brand packaging. In 2024, recycled content in plastic packaging reached 8%, up from prior years, although it remains below the company’s 2025 goal of 20%. Efforts also include recycling and reuse programs for cardboard and other materials.

When Growth Multiplies the Climate Test

Walmart’s financial scale helps explain both its influence and its difficulty. In its latest fiscal year, the company generated more than $680 billion in revenue, making it the largest retailer in the world.

That scale means even small efficiency gains can lead to large absolute emissions cuts. But it also means that business growth can offset progress if demand rises faster than efficiency improves. Areas such as refrigeration, trucking, and cold-chain logistics remain hard to decarbonize quickly.

Technology limits also play a role. Some low-carbon solutions are still costly or not available at scale. These constraints have slowed progress toward interim targets, even as long-term goals remain in place.

Still, the retail giant continues to work on its sustainability actions spanning energy, supply chains, packaging, climate intensity, and innovation.

A Trillion-Dollar Reminder of Climate Responsibility

Walmart’s rise to a $1 trillion market value highlights how financial performance and sustainability planning now move side by side. The company has invested heavily in clean energy, supplier engagement, and efficiency. It has also been open about where progress has fallen short.

For the wider retail sector, Walmart’s experience offers a clear lesson. Large climate commitments can drive change, but execution takes time, capital, and coordination across thousands of partners. Success depends not only on targets, but on steady delivery and transparent reporting.

As Walmart continues to grow, its climate strategy will remain under scrutiny. The company’s size ensures that progress, delays, and course corrections all carry global impact. In that sense, Walmart’s trillion-dollar milestone is not just a financial marker; it is also a reminder of how closely corporate scale and environmental responsibility are now linked.

The post Walmart Hits $1 Trillion Milestone And Its Climate Footprint Just Got Bigger appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com