Connect with us

Published

on

Given the constant flow of bad news around climate change – smashed heat records, shrinking polar ice, rampant wildfires, apocalyptic floods – you’d be forgiven for thinking there’s no cause for hope. But a new book by the head of the World Resources Institute (WRI) argues passionately for a more positive view.

In “The New Global Possible – Rebuilding Optimism in the Age of Climate Crisis”, Ani Dasgupta talks us through key developments over the past four decades that have driven forward international climate action, including an intriguing account of how the Paris Agreement was landed against the odds.

Dasgupta, president and CEO of the US-based WRI, is far from evangelical about the global mission of green transition. His assessment of the state of play is rooted in realism – and, like many advocates for a sustainable world, he is disappointed with the pace of change so far.

But, he insists, that is no reason to give up. The book explains elegantly – drawing on some 60 real-world stories of success and more than 100 interviews with experts, leaders and change-makers – not just what’s holding things back but, most importantly, how to overcome those obstacles.

In an interview with Climate Home News before the book’s publication this week, the softly-spoken former head of infrastructure at the World Bank pointed to leaps forward in technology – from solar and wind power to greener cement and satellites that can monitor rainforest loss remotely – as the underlying enabler of climate progress. But he emphasised that technology alone will not be enough.

“We need to use technology as a starting point to orchestrate the change,” he explained. “We need to get the outcome we want that is not only good for climate, but good for people and nature at the same time.”

    Focus on people – not carbon

    A major failure of the climate movement so far, in Dasgupta’s view, is that it has focused too heavily on carbon – the damage it’s doing and how to reduce CO2 emissions – and not enough on people.

    Unless voters understand that measures to tackle climate change will bring them benefits now rather than in a far distant future, they are unlikely to make green choices a priority, he argues – especially when those decisions come with an upfront cost such as replacing a gas boiler with a heat pump.

    That’s why some governments, including in Europe, have run into trouble when trying to force low-carbon behaviour shifts. Dasgupta believes politicians have done a pretty bad job at telling citizens why it makes personal sense for them to switch to greener ways of living, working and doing business.

    He noted that in 2024 – a historic year for elections, with about 70 countries holding polls – only one, the UK, saw strong campaigning on climate policies, with the centre-left Labour Party winning partly on a green ticket.

    India-born Dasgupta, a trained architect who has many years’ experience of working on ways to make cities more sustainable, argues that climate policy experts need to offer politicians more help to demonstrate why it’s in the public interest to get behind climate action.

    “I think for too long, the transition has been painted as about the sacrifices we need to do; don’t drive cars, take buses and [buy] heat pumps – but not the outcome that is there. That is clean air for our kids, abundant, affordable energy, food that doesn’t destroy nature, clean water,” he said.

    Ani Dasgupta, president and CEO of the World Resources Institute and author of “The New Global Possible – Rebuilding Optimism in the Age of Climate Crisis” (Photo: Beverlié Lord)

    Ani Dasgupta, president and CEO of the World Resources Institute and author of “The New Global Possible – Rebuilding Optimism in the Age of Climate Crisis” (Photo: Beverlié Lord)

    Hydrocarbons “everywhere”

    Yet the question still begs itself: why – if the advantages seem obvious – has it been so hard to make these changes at the scale and pace required? The answer, according to Dasgupta, is that their proponents are running up against a model rooted in 200 years of prosperity fuelled by coal, oil and gas.

    As a result, hydrocarbons “are everywhere in the economy”, even in many daily essentials like shampoo – and the incumbents who got rich from extracting and selling fossil fuels are fighting to preserve the status quo.

    “We have to find a path for them to change. They’re not just going to go away. They’re very economically powerful, politically connected,” Dasgupta said.

    Businesses doubt COP30 logistics as presidency calls on them to come to Belém

    Renewed business and political support for the prevailing high-carbon economic model has led to a pushback against climate action in some parts of the West, not least in the United States where the administration of climate change-sceptic Donald Trump wants to “drill, baby drill” and is pulling the country out of the 2015 Paris climate agreement. Dasgupta doesn’t find this too surprising.

    “I think this backlash was inevitable because when we signed the Paris Agreement, we thought we were signing a climate agreement. We didn’t realise we were signing onto a vast economic transition that we’re in the beginning of,” he said.

    COP: “Imperfect but necessary”

    The book does an efficient job at defending the UN climate process that yielded the Paris pact and its emblematic annual COP summits, which have come under attack in recent years for falling short of promises, getting bogged down in arcane arguments and turning into a travelling climate circus.

    Dasgupta points to how – patchy as its implementation may be – action spurred by the Paris Agreement has brought down global warming predictions from around 4 degrees Celsius this century to 2.6C – and if all pledges made so far were to become a reality, even to 1.7C, within the promised range.

    At the same time, he argues for making COPs more effective by changing decision-making from the current consensus-based model to one that that “gives every country a voice but not a veto”.

    Cop21 president Laurent Fabius holds up the text of the Paris Agreement. (Photo: IISD/ENB/ Kiara Worth)

    Cop21 president Laurent Fabius holds up the text of the Paris Agreement. (Photo: IISD/ENB/ Kiara Worth)

    In addition, to give the Paris process more teeth, he recommends greater transparency on individual countries’ progress, which would help civil society and citizens hold governments to account, along with the ability for the five-year stocktake to offer “remedies and rigorous regimes for improvement”.

    In the end, making the Paris Agreement – and the national climate plans (NDCs) that underpin it – work as intended will require “a systemwide economic transition” that can only be achieved by uniting all government ministries, businesses and financial institutions behind that mission, the book notes.

    “COP is an imperfect but necessary instrument for mobilising global climate action, but the harsh reality is that our success currently depends on voluntary contributions to be implemented beyond it,” Dasgupta writes.

    Win-win-win?

    Making this happen means convincing the world outside of COPs it’s an endeavour worth signing up for. The sixth chapter of the book is dedicated to how a loose consortium of researchers, top-level officials and organisation such as WRI and the World Economic Forum embarked on a monumental mission to do that by shaping a positive narrative around the economics of a low-carbon transition.

    One piece of number-crunching in particular captured imaginations in the climate community and beyond: if done right, investing in climate action could result in $26 trillion of economic benefits by 2030 compared with business as usual, the New Climate Economy (NCE) research programme calculated.

    Has hard data like this worked to win hearts and minds? It depends on who you ask. According to the book, in a statement released ahead of COP27 in 2022, NCE commissioners Sharan Burrow, Nicolas Stern and Paul Polman described this figure and the work supporting it as “a breakthrough”, showing “once and for all that ambitious climate action is a win-win-win for the climate, people, and the economy”.

    COP30 president: Transition from fossil fuels can start without climate talks

    Sadly, that victory may not have been as decisive as they had hoped, as evidenced in today’s culture wars over the costs of net zero in the UK, the conspicuous absence of climate and nature from election campaigns, and the dash by many fossil-fuel and financial behemoths to row back on their emissions-cutting pledges.

    Despite recent setbacks, Dasgupta puts his hope in two ways forward: a push to translate global climate goals into national-level transitions in sectors like energy and food; and a combination of government regulation and voluntary business action to keep the private sector moving in the right direction.

    “I don’t think we have the luxury to be disappointed,” he said. “I think we know what [has] to be done, what needs to happen. We just have to get to work.”

    The New Global Possible: Rebuilding Optimism in the Age of Climate Crisis (9781633310667) is published by Disruption Books.

    The post In new book, WRI chief argues for climate optimism despite obstacles appeared first on Climate Home News.

    In new book, WRI chief argues for climate optimism despite obstacles

    Continue Reading

    Climate Change

    Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

    Published

    on

    Weather disasters are shared experiences in the Maine foothills and communities are preparing for a wetter, warmer future.

    The December 2023 flood. The 2022 Halloween storm. The Patriots Day storm of 2007. The Great Ice Storm of 1998.

    Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

    Continue Reading

    Climate Change

    Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

    Published

    on

    In Kenya’s Laikipia County where temperatures can reach as high as 30 degrees Celsius, a local building technology is helping homes stay cooler while supporting education, creating jobs and improving the livelihoods and resilience of community residents, Climate Home News found on a visit to the region.

    Situated in a semi-arid region, houses in Laikipia are mostly built with wood or cement blocks with corrugated iron sheets for roofing. This building method usually leaves the insides of homes scorching hot – and as global warming accelerates, the heat is becoming unbearable.

    Peter Muthui, principal of Mukima Secondary School in Laikipia County, lived in these harsh conditions until 2023, when the Laikipia Integrated Housing Project began in his community.

    Nine of our best climate stories from 2025

    The project uses compressed earth block (CEB) technology, drawing on traditional building methods and local materials – including soil, timber, grass and cow dung – to keep buildings cool in the highland climate. The thick earth walls provide insulation against the heat.

    Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

    Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

    “Especially around the months of September all the way to December, it is very, very hot [in Laikipia], but as you might have noticed, my house is very cool even during the heat,” Muthui told Climate Home News.

    His school has also deployed the technology for classrooms and boarding hostels to ensure students can carry on studying during the hottest seasons of the year. This way, they are protected from severe conditions and school closures can be avoided. In South Sudan, dozens of students collapsed from heat stroke in the capital Juba earlier this year, causing the country to shutter schools for weeks.

    COP30 sees first action call on sustainable, affordable housing

    The buildings and construction sector accounts for 37% of global emissions, making it the world’s largest emitter of greenhouse gases, according to the UN Environment Programme (UNEP). While calls to decarbonise the sector have grown, meaningful action to cut emissions has remained limited.

    At COP28 in Dubai, the United Arab Emirates and Canada launched the Cement and Concrete Breakthrough Initiative to speed up investment in the technologies, policies and tools needed to put the cement and concrete industry on a net zero-emissions path by 2050.

    Canada’s innovation minister, François-Philippe Champagne, said the initiative aimed to build a competitive “green cement and concrete industry” which creates jobs while building a cleaner future.

      Momentum continued at COP30, where the Intergovernmental Council for Buildings and Climate (ICBC) held its first ministerial meeting and adopted the Belém Call for Action for Sustainable and Affordable Housing.

      Coordinated by UNEP’s Global Alliance for Buildings and Construction, the council has urged countries to embed climate considerations into affordable housing from the outset, “ensuring the drive to deliver adequate homes for social inclusion goes hand in hand with minimising whole-life emissions and
      environmental impacts”.

      Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

      Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

      With buildings responsible for 34% of energy-related emissions and 32% of global energy demand, and 2.8 billion people living in inadequate housing, the ICBC stressed that “affordable, adequate, resource-efficient, low-carbon, climate-resilient and durable housing is essential to a just transition, the achievement of the Sustainable Development Goals and the effective implementation of the Paris Agreement”.

      Compressed earth offers local, green alternative

      By using locally sourced materials, and just a little bit of cement, the compressed earth technology is helping residents in Kenya’s Laikipia region to build affordable, climate-smart homes that reduce emissions and environmental impacts while creating economic opportunities for local residents, said Dacan Aballa, construction manager at Habitat for Humanity International, the project’s developers.

      Aballa said carbon emissions in the construction sector occur all through the lifecycle, from material extraction, processing and transportation to usage and end of life. However, by switching to compressed earth blocks, residents can source materials available in their environment, avoiding nearly all of that embedded carbon pollution.

      According to the World Economic Forum (WEF), global cement manufacturing is responsible for about 8% of total CO2 emissions, and the current trajectory would see emissions from the sector soar to 3.8 billion tonnes per year by 2050 – a level that, compared to countries, would place the cement industry as one of the world’s top three or four emitters alongside the US and China.

      Tripling adaptation finance is just the start – delivery is what matters

      Comparing compressed earth blocks and conventional materials in terms of carbon emissions, Aballa said that by using soil native to the area, the process avoids the fossil fuels that would normally have been used for to produce and transport building materials, slashing carbon and nitrogen dioxide emissions.

      The local building technology also helps save on energy that would have been used for cooling these houses as well as keeping them warm during colder periods, Aballa explained.

      Justin Atemi, water and sanitation officer at Habitat for Humanity, said the brick-making technique helps reduce deforestation too. This is because the blocks are left to air dry under the sun for 21 days – as opposed to conventional fired-clay blocks that use wood as fuel for kilns – and are then ready for use.

      Women walk passed houses in the village of Kangimi, Kaduna State, Nigeria (Photo: Sadiq Mustapha)

      Traditional knowledge becomes adaptation mechanism

      Africa’s red clay soil was long used as a building material for homes, before cement blocks and concrete became common. However, the method never fully disappeared. Now, as climate change brings higher temperatures, this traditional building approach is gaining renewed attention, especially in low-income communities in arid and semi-arid regions struggling to cope with extreme heat.

      From Kenya’s highlands to Senegal’s Sahelian cities, compressed earth construction is being repurposed as a low-cost, eco-friendly option for homes, schools, hospitals – and even multi-storey buildings.

      Senegal’s Goethe-Institut in Dakar was constructed primarily using compressed earth blocks. In Mali, the Bamako medical school, which was built with unfired mud bricks, stays cool even during the hottest weather.

      And more recently, in Nigeria’s cultural city of Benin, the just-finished Museum of West African Art (MOWA) was built using “rammed earth” architecture – a similar technology that compresses moist soil into wooden frames to form solid walls – making it one of the largest such structures in Africa.

      The post Earth blocks keep homes cool while cutting emissions in Kenya’s drylands appeared first on Climate Home News.

      Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

      Continue Reading

      Climate Change

      Using energy-hungry AI to detect climate tipping points is a paradox

      Published

      on

      David Sathuluri is a Research Associate and Dr. Marco Tedesco is a Lamont Research Professor at the Lamont-Doherty Earth Observatory of Columbia University.

      As climate scientists warn that we are approaching irreversible tipping points in the Earth’s climate system, paradoxically the very technologies being deployed to detect these tipping points – often based on AI – are exacerbating the problem, via acceleration of the associated energy consumption.

      The UK’s much-celebrated £81-million ($109-million) Forecasting Tipping Points programme involving 27 teams, led by the Advanced Research + Invention Agency (ARIA), represents a contemporary faith in technological salvation – yet it embodies a profound contradiction. The ARIA programme explicitly aims to “harness the laws of physics and artificial intelligence to pick up subtle early warning signs of tipping” through advanced modelling.

      We are deploying massive computational infrastructure to warn us of climate collapse while these same systems consume the energy and water resources needed to prevent or mitigate it. We are simultaneously investing in computationally intensive AI systems to monitor whether we will cross irreversible climate tipping points, even as these same AI systems could fuel that transition.

      The computational cost of monitoring

      Training a single large language model like GPT-3 consumed approximately 1,287 megawatt-hours of electricity, resulting in 552 metric tons of carbon dioxide – equivalent to driving 123 gasoline-powered cars for a year, according to a recent study.

      GPT-4 required roughly 50 times more electricity. As the computational power needed for AI continues to double approximately every 100 days, the energy footprint of these systems is not static but is exponentially accelerating.

      UN adopts first-ever resolution on AI and environment, but omits lifecycle

      And the environmental consequences of AI models extend far beyond electricity usage. Besides massive amounts of electricity (much of which is still fossil-fuel-based), such systems require advanced cooling that consumes enormous quantities of water, and sophisticated infrastructure that must be manufactured, transported, and deployed globally.

      The water-energy nexus in climate-vulnerable regions

      A single data center can consume up to 5 million gallons of drinking water per day – sufficient to supply thousands of households or farms. In the Phoenix area of the US alone, more than 58 data centers consume an estimated 170 million gallons of drinking water daily for cooling.

      The geographical distribution of this infrastructure matters profoundly as data centers requiring high rates of mechanical cooling are disproportionately located in water-stressed and socioeconomically vulnerable regions, particularly in Asia-Pacific and Africa.

      At the same time, we are deploying AI-intensive early warning systems to monitor climate tipping points in regions like Greenland, the Arctic, and the Atlantic circulation system – regions already experiencing catastrophic climate impacts. They represent thresholds that, once crossed, could trigger irreversible changes within decades, scientists have warned.

      Nine of our best climate stories from 2025

      Yet computational models and AI-driven early warning systems operate according to different temporal logics. They promise to provide warnings that enable future action, but they consume energy – and therefore contribute to emissions – in the present.

      This is not merely a technical problem to be solved with renewable energy deployment; it reflects a fundamental misalignment between the urgency of climate tipping points and the gradualist assumptions embedded in technological solutions.

      The carbon budget concept reveals that there is a cumulative effect on how emissions impact on temperature rise, with significant lags between atmospheric concentration and temperature impact. Every megawatt-hour consumed by AI systems training on climate models today directly reduces the available carbon budget for tomorrow – including the carbon budget available for the energy transition itself.

      The governance void

      The deeper issue is that governance frameworks for AI development have completely decoupled from carbon budgets and tipping point timescales. UK AI regulation focuses on how much computing power AI systems use, but it does not require developers to ask: is this AI’s carbon footprint small enough to fit within our carbon budget for preventing climate tipping points?

      There is no mechanism requiring that AI infrastructure deployment decisions account for the specific carbon budgets associated with preventing different categories of tipping points.

      Meanwhile, the energy transition itself – renewable capacity expansion, grid modernization, electrification of transport – requires computation and data management. If we allow unconstrained AI expansion, we risk the perverse outcome in which computing infrastructure consumes the surplus renewable energy that could otherwise accelerate decarbonization, rather than enabling it.

        What would it mean to resolve the paradox?

        Resolving this paradox requires, for example, moving beyond the assumption that technological solutions can be determined in isolation from carbon constraints. It demands several interventions:

        First, any AI-driven climate monitoring system must operate within an explicitly defined carbon budget that directly reflects the tipping-point timescale it aims to detect. If we are attempting to provide warnings about tipping points that could be triggered within 10-20 years, the AI system’s carbon footprint must be evaluated against a corresponding carbon budget for that period.

        Second, governance frameworks for AI development must explicitly incorporate climate-tipping point science, establishing threshold restrictions on computational intensity in relation to carbon budgets and renewable energy availability. This is not primarily a “sustainability” question; it is a justice and efficacy question.

        Third, alternative models must be prioritized over the current trajectory toward ever-larger models. These should include approaches that integrate human expertise with AI in time-sensitive scenarios, carbon-aware model training, and using specialized processors matched to specific computational tasks rather than relying on universal energy-intensive systems.

        The deeper critique

        The fundamental issue is that the energy-system tipping point paradox reflects a broader crisis in how wealthy nations approach climate governance. We have faith that innovation and science can solve fundamental contradictions, rather than confronting the structural need to constrain certain forms of energy consumption and wealth accumulation. We would rather invest £81 million in computational systems to detect tipping points than make the political decisions required to prevent them.

        The positive tipping point for energy transition exists – renewable energy is now cheaper than fossil fuels, and deployment rates are accelerating. What we lack is not technological capacity but political will to rapidly decarbonize, as well as community participation.

        IEA: Slow transition away from fossil fuels would cost over a million energy sector jobs

        Deploying energy-intensive AI systems to monitor tipping points while simultaneously failing to deploy available renewable energy represents a kind of technological distraction from the actual political choices required.

        The paradox is thus also a warning: in the time remaining before irreversible tipping points are triggered, we must choose between building ever-more sophisticated systems to monitor climate collapse or deploying available resources – capital, energy, expertise, political attention – toward allaying the threat.

        The post Using energy-hungry AI to detect climate tipping points is a paradox appeared first on Climate Home News.

        Using energy-hungry AI to detect climate tipping points is a paradox

        Continue Reading

        Trending

        Copyright © 2022 BreakingClimateChange.com