Connect with us

Published

on

As climate change reshapes landscapes across Canada, Indigenous communities in treaty territories face unique challenges and opportunities. The intricate relationship between Indigenous Peoples, their ancestral lands, and the Canadian government, as defined by historical and modern treaties, adds a complex dimension to climate change adaptation efforts. This exploration delves into how First Nations are navigating climate challenges while asserting their treaty rights and preserving their cultural heritage.

Understanding Treaty Rights in the Context of Climate Change

Treaties between Indigenous nations and the Crown form the legal and moral bedrock of Canada. These agreements, some dating back to the 18th century and others as recent as the 1990s define rights to land use, resource management, and cultural practices. However, the framers of these treaties could not have anticipated the profound environmental changes brought by global warming.

Chief Archie Waquan of the Mikisew Cree First Nation reflects on this challenge: “Our ancestors signed Treaty 8 to protect our way of life for future generations. Now, climate change is altering the very land and waters that the treaty was meant to preserve. We need to interpret our rights in light of these new realities.”

This sentiment echoes across treaty territories, from the numbered treaties of the Prairies to the modern agreements in the Yukon. Indigenous leaders and legal experts are increasingly arguing that the right to a healthy environment and the ability to adapt to climate change are inherent in treaty agreements.

Climate Impacts on Treaty Territories

The impacts of climate change in treaty territories are as diverse as the landscapes they encompass. In the Prairies, covered by Treaties 1 through 7, First Nations are grappling with increased drought conditions that threaten traditional agriculture and wildlife habitats.

In Alberta, Dene Tha’ First Nation member James Ahnassay describes the changes: “Our Elders remember when the muskeg was thick and wet. Now, it’s drying up. The moose and caribou are changing their patterns. It’s affecting our hunting, our medicine gathering, everything.”

In the boreal forest regions, encompassed by Treaties 8, 9, and 11, increased fire risks pose significant challenges. The 2016 Fort McMurray wildfire, which forced the evacuation of several First Nations communities, serves as a stark reminder of these growing threats.

Coastal areas, including those covered by the Douglas Treaties in British Columbia and modern treaties in the Atlantic provinces, face rising sea levels and increased erosion. These changes threaten not only infrastructure but also culturally significant sites and traditional harvesting areas.

Indigenous-Led Adaptation Strategies

In response to these challenges, Indigenous communities are developing innovative adaptation strategies that honour treaty relationships while addressing climate realities.

(Image Credit: Jordan Gonzalez, Unsplash)

Land-Use Planning and Management

Many First Nations are asserting their treaty rights through comprehensive land-use planning that incorporates climate change considerations. The Mikisew Cree First Nation in Alberta, signatories to Treaty 8, have developed a cutting-edge climate-ready land-use plan.

Melody Lepine, director of government and industry relations for Mikisew Cree First Nation explains: “Our plan looks at how climate change will affect our territory over the next 50 to 100 years. We’re identifying areas that need protection, areas where we can develop sustainably, and how we can adapt our traditional practices to changing conditions.

Wildlife and Habitat Conservation

(Image Credit: Joe Eitzen, Unsplash)

Treaty rights to hunt and fish are central to many Indigenous cultures. As climate change alters wildlife habitats and migration patterns, First Nations are leading conservation efforts to protect these rights for future generations.

Blog by Rye Karonhiowanen

(Header Image Credit: Getty Images, Licensed, Unsplash)

The post Preserving the Land, Preserving the Culture: Climate Change Adaptation in Treaty Territories appeared first on Indigenous Climate Hub.

Preserving the Land, Preserving the Culture: Climate Change Adaptation in Treaty Territories

Continue Reading

Climate Change

Efforts to green lithium extraction face scrutiny over water use 

Published

on

Mining companies are showcasing new technologies which they say could extract more lithium – a key ingredient for electric vehicle (EV) batteries – from South America’s vast, dry salt flats with lower environmental impacts.

But environmentalists question whether the expensive technology is ready to be rolled out at scale, while scientists warn it could worsen the depletion of scarce freshwater resources in the region and say more research is needed.

The “lithium triangle” – an area spanning Argentina, Bolivia and Chile – holds more than half of the world’s known lithium reserves. Here, lithium is found in salty brine beneath the region’s salt flats, which are among some of the driest places on Earth.

Lithium mining in the region has soared, driven by booming demand to manufacture batteries for EVs and large-scale energy storage.

Mining companies drill into the flats and pump the mineral-rich brine to the surface, where it is left under the sun in giant evaporation pools for 18 months until the lithium is concentrated enough to be extracted.

The technique is relatively cheap but requires vast amounts of land and water. More than 90% of the brine’s original water content is lost to evaporation and freshwater is needed at different stages of the process.

One study suggested that the Atacama Salt Flat in Chile is sinking by up to 2 centimetres a year because lithium-rich brine is being pumped at a faster rate than aquifers are being recharged.

    Lithium extraction in the region has led to repeated conflicts with local communities, who fear the impact of the industry on local water supplies and the region’s fragile ecosystem.

    The lithium industry’s answer is direct lithium extraction (DLE), a group of technologies that selectively extracts the silvery metal from brine without the need for vast open-air evaporation ponds. DLE, it argues, can reduce both land and water use.

    Direct lithium extraction investment is growing

    The technology is gaining considerable attention from mining companies, investors and governments as a way to reduce the industry’s environmental impacts while recovering more lithium from brine.

    DLE investment is expected to grow at twice the pace of the lithium market at large, according to research firm IDTechX.

    There are around a dozen DLE projects at different stages of development across South America. The Chilean government has made it a central pillar of its latest National Lithium Strategy, mandating its use in new mining projects.

    Last year, French company Eramet opened Centenario Ratones in northern Argentina, the first plant in the world to attempt to extract lithium solely using DLE.

    Eramet’s lithium extraction plant is widely seen as a major test of the technology. “Everyone is on the edge of their seats to see how this progresses,” said Federico Gay, a lithium analyst at Benchmark Mineral Intelligence. “If they prove to be successful, I’m sure more capital will venture into the DLE space,” he said.

    More than 70 different technologies are classified as DLE. Brine is still extracted from the salt flats but is separated from the lithium using chemical compounds or sieve-like membranes before being reinjected underground.

    DLE techniques have been used commercially since 1996, but only as part of a hybrid model still involving evaporation pools. Of the four plants in production making partial use of DLE, one is in Argentina and three are in China.

    Reduced environmental footprint

    New-generation DLE technologies have been hailed as “potentially game-changing” for addressing some of the issues of traditional brine extraction.

    “DLE could potentially have a transformative impact on lithium production,” the International Lithium Association found in a recent report on the technology.

    Firstly, there is no need for evaporation pools – some of which cover an area equivalent to the size of 3,000 football pitches.

    “The land impact is minimal, compared to evaporation where it’s huge,” said Gay.

    A drone view shows Eramet’s lithium production plant at Salar Centenario in Salta, Argentina, July 4, 2024. (Photo: REUTERS/Matias Baglietto)

    A drone view shows Eramet’s lithium production plant at Salar Centenario in Salta, Argentina, July 4, 2024. (Photo: REUTERS/Matias Baglietto)

    The process is also significantly quicker and increases lithium recovery. Roughly half of the lithium is lost during evaporation, whereas DLE can recover more than 90% of the metal in the brine.

    In addition, the brine can be reinjected into the salt flats, although this is a complicated process that needs to be carefully handled to avoid damaging their hydrological balance.

    However, Gay said the commissioning of a DLE plant is currently several times more expensive than a traditional lithium brine extraction plant.

    “In theory it works, but in practice we only have a few examples,” Gay said. “Most of these companies are promising to break the cost curve and ramp up indefinitely. I think in the next two years it’s time to actually fulfill some of those promises.”

    Freshwater concerns

    However, concerns over the use of freshwater persist.

    Although DLE doesn’t require the evaporation of brine water, it often needs more freshwater to clean or cool equipment.

    A 2023 study published in the journal Nature reviewed 57 articles on DLE that analysed freshwater consumption. A quarter of the articles reported significantly higher use of freshwater than conventional lithium brine mining – more than 10 times higher in some cases.

    “These volumes of freshwater are not available in the vicinity of [salt flats] and would even pose problems around less-arid geothermal resources,” the study found.

    The company tracking energy transition minerals back to the mines

    Dan Corkran, a hydrologist at the University of Massachusetts, recently published research showing that the pumping of freshwater from the salt flats had a much higher impact on local wetland ecosystems than the pumping of salty brine. “The two cannot be considered equivalent in a water footprint calculation,” he said, explaining that doing so would “obscure the true impact” of lithium extraction.

    Newer DLE processes are “claiming to require little-to-no freshwater”, he added, but the impact of these technologies is yet to be thoroughly analysed.

    Dried-up rivers

    Last week, Indigenous communities from across South America held a summit to discuss their concerns over ongoing lithium extraction.

    The meeting, organised by the Andean Wetlands Alliance, coincided with the 14th International Lithium Seminar, which brought together industry players and politicians from Argentina and beyond.

    Indigenous representatives visited the nearby Hombre Muerto Salt Flat, which has borne the brunt of nearly three decades of lithium extraction. Today, a lithium plant there uses a hybrid approach including DLE and evaporation pools.

    Local people say the river “dried up” in the years after the mine opened. Corkran’s study linked a 90% reduction in wetland vegetation to the lithium’s plant freshwater extraction.

    Pia Marchegiani, of Argentine environmental NGO FARN, said that while DLE is being promoted by companies as a “better” technique for extraction, freshwater use remained unclear. “There are many open questions,” she said.

    AI and satellite data help researchers map world’s transition minerals rush

    Stronger regulations

    Analysts speaking to Climate Home News have also questioned the commercial readiness of the technology.

    Eramet was forced to downgrade its production projections at its DLE plant earlier this year, blaming the late commissioning of a crucial component.

    Climate Home News asked Eramet for the water footprint of its DLE plant and whether its calculations excluded brine, but it did not respond.

    For Eduardo Gigante, an Argentina-based lithium consultant, DLE is a “very promising technology”. But beyond the hype, it is not yet ready for large-scale deployment, he said.

    Strong regulations are needed to ensure that the environmental impact of the lithium rush is taken seriously, Gigante added.

    In Argentina alone, there are currently 38 proposals for new lithium mines. At least two-thirds are expected to use DLE. “If you extract a lot of water without control, this is a problem,” said Gigante. “You need strong regulations, a strong government in order to control this.”

    The post Efforts to green lithium extraction face scrutiny over water use  appeared first on Climate Home News.

    Efforts to green lithium extraction face scrutiny over water use 

    Continue Reading

    Climate Change

    Maryland’s Conowingo Dam Settlement Reasserts State’s Clean Water Act Authority but Revives Dredging Debate

    Published

    on

    The new agreement commits $340 million in environmental investments tied to the Conowingo Dam’s long-term operation, setting an example of successful citizen advocacy.

    Maryland this month finalized a $340 million deal with Constellation Energy to relicense the Conowingo Dam in Cecil County, ending years of litigation and regulatory uncertainty. The agreement restores the state’s authority to enforce water quality standards under the Clean Water Act and sets a possible precedent for dozens of hydroelectric relicensing cases nationwide expected in coming years.

    Maryland’s Conowingo Dam Settlement Reasserts State’s Clean Water Act Authority but Revives Dredging Debate

    Continue Reading

    Climate Change

    A Michigan Town Hopes to Stop a Data Center With a 2026 Ballot Initiative

    Published

    on

    Local officials see millions of dollars in tax revenue, but more than 950 residents who signed ballot petitions fear endless noise, pollution and higher electric rates.

    This is the second of three articles about Michigan communities organizing to stop the construction of energy-intensive computing facilities.

    A Michigan Town Hopes to Stop a Data Center With a 2026 Ballot Initiative

    Continue Reading

    Trending

    Copyright © 2022 BreakingClimateChange.com