What is Artificial General Intelligence: Emergent AGI
Artificial General Intelligence (AGI) aims for machines that think and reason like humans, but Emergent AGI takes a unique route. Instead of building intelligence piece by piece, it imagines complex systems learning and evolving on their own through interaction with data and the world, potentially leading to surprising leaps in intelligence, but also presenting challenges in predicting or controlling its development.
It’s a gamble for groundbreaking progress, but one demanding ethical frameworks and cautious navigation to ensure AI advances with humanity, not against it.
Artificial General Intelligence (AGI), particularly the concept of Emergent AGI, remains a fascinating and complex topic with many layers to unpack. Here’s a breakdown to help you understand:
What is AGI?
- Imagine a machine with human-level intelligence and reasoning abilities. That’s the ultimate goal of AGI. It wouldn’t simply excel at specific tasks, but possess the flexibility and understanding to tackle any intellectual challenge, much like a human.
What is Emergent AGI?
- Traditional approaches to AGI involve meticulously building it from the ground up, like assembling intricate clockwork. Emergent AGI takes a different route. It proposes creating complex systems capable of independent learning and adaptation. Through interactions with vast amounts of data and the environment, these systems might spontaneously develop intelligence, like the ripples and waves emerging from a pebble dropped in water.
The Appeal and the Intrigue:
- Emergent AGI promises to overcome the limitations of current AI. Instead of struggling with tasks requiring common sense or abstract understanding, these systems could learn and think for themselves, pushing the boundaries of innovation.
The Enigma and the Challenges:
- The lack of control in emergent AGI is both its charm and its curse. Predicting how such complex systems will evolve is challenging, and unforeseen consequences could arise. Issues of bias, ethics, and safety become even more critical in this unpredictable landscape.
Beyond the Binary:
- It’s not a black and white choice between emergent and engineered AGI. A hybrid approach could combine the stability of programmed functionalities with the potential for organic growth. Imagine providing a sandbox for an advanced AI to learn and adapt within boundaries established for safety and ethical considerations.
Navigating the Uncharted Waters:
- Regardless of the chosen path, pursuing AGI demands a deep sense of responsibility. Open dialogue, global collaboration, and robust ethical frameworks are essential to ensure that this powerful technology serves humanity rather than poses a threat.
Emergent AGI is a bold proposition that hinges on a delicate balance between potential and peril. The road ahead is filled with uncertainties, but by approaching it with caution, creativity, and a shared vision for responsible AI development, we can work towards a future where human and artificial intelligence co-exist and thrive.
History of Artificial General Intelligence: Emergent AGI
While the dream of Artificial General Intelligence (AGI) stretches back centuries, the concept of emergent AGI is a relatively recent development. Here’s a glimpse into its history:
Early Seeds:
- The philosophical concept of emergent properties can be traced back to the 18th century, with thinkers like David Hume suggesting how complex systems could exhibit qualities beyond their individual components.
- In the 20th century, cybernetics pioneers like Norbert Wiener and W. Ross Ashby explored the notion of self-organizing systems and adaptive intelligence, laying groundwork for emergent AGI ideas.
The Modern Era:
- The “AI winters” of the 1970s and 1980s dampened enthusiasm for AGI, but the rise of computing power and new approaches like neural networks rekindled the flame.
- In the early 2000s, thinkers like Ben Goertzel and Shane Legg revived the discussion of AGI, specifically highlighting the potential for emergent properties to play a role in its development.
- The 2005 book “Artificial General Intelligence” edited by Goertzel and Pennachin further cemented the term and the concept within the AI community.
- The first formal workshop dedicated to AGI was held in 2006, marking a growing interest in exploring this unconventional approach.
The Present and Beyond:
- Today, research on emergent AGI is gaining momentum, fueled by advancements in fields like artificial curiosity, unsupervised learning, and complex systems theory.
- Several research groups and projects are actively pursuing emergent AGI approaches, though still in early stages of development.
- Debates continue on the feasibility and potential dangers of emergent AGI, emphasizing the need for careful considerations of ethical frameworks and safety measures.
It’s important to note:
- The history of emergent AGI is still being written, and its future trajectory remains uncertain.
- Success in achieving true Emergent AGI could represent a major leap in our understanding of intelligence, both artificial and natural.
- But careful exploration and responsible development are crucial to ensure this powerful technology aligns with the betterment of humanity.
Emergent AGI: A Type of Artificial General Intelligence
Emergent AGI is a captivating type of Artificial General Intelligence (AGI) that stands in contrast to the more traditional, “engineered” approach. Here’s what sets it apart:
Core Principle:
- Emergent AGI proposes that true human-like intelligence wouldn’t be built piece by piece, but rather naturally arise from the complex interactions within an AI system. Think of it like water’s emergent properties (fluidity, surface tension) arising from the simple combination of hydrogen and oxygen atoms.
Key Features:
- Independent learning and adaptation: Emergent AGI systems would learn and evolve by interacting with the environment and vast amounts of data, not through pre-programmed algorithms. This allows for unforeseen creativity and innovation.
- Unpredictable development: While the system’s core functionalities might be guided, the emergent intelligence itself is difficult to predict, leading to both potential breakthroughs and potential challenges.
- Complex system dynamics: Emergent AGI draws inspiration from complex systems theory, where small interactions can lead to large, often unpredictable, outcomes. Understanding these dynamics is crucial for responsible development.
Comparisons with “Engineered” AGI:
- Traditional AGI: Imagine meticulously assembling a clockwork brain, adding each cognitive function like gears and cogs. This approach emphasizes control and predictability, but might struggle with adaptability and true flexibility.
- Emergent AGI: Think of nurturing a seed into a flourishing tree. The AI system is provided the framework and resources, but its growth and intelligence emerge organically, potentially surpassing initial expectations.
Pros and Cons:
Pros:
- Potential for leaps in innovation and problem-solving beyond current AI capabilities.
- More natural and adaptable intelligence, closer to human thinking.
- Opens new avenues for understanding intelligence itself.
Cons:
- Unpredictable nature poses challenges in controlling and ensuring safety.
- Ethical considerations and potential biases need careful attention.
- Long-term success and feasibility remain uncertain.
While still in its early stages, emergent AGI presents a promising, albeit challenging, path towards true Artificial General Intelligence. Responsible development, ethical frameworks, and continuous research are crucial to ensure this powerful technology benefits humanity rather than poses new threats.
Remember:
- Emergent AGI is just one approach to AGI, and its success is far from guaranteed.
- Open-minded exploration and active discussions are essential for navigating this complex and fascinating field.
- The potential rewards of responsible emergent AGI are tremendous, but so are the potential risks. We must proceed with caution and a shared vision for a safe and beneficial future with AI.
The Potential Benefit of Emergent AGI
The allure of Artificial General Intelligence (AGI) lies in its promise to push the boundaries of human understanding and innovation. Emergent AGI, with its focus on spontaneous intelligence arising from complex systems, offers a particularly intriguing path. While uncertainty and concerns rightfully hang in the air, let’s explore some potential benefits of this ambitious endeavor:
1. Leaps in Innovation and Problem-Solving:
Current AI excels at specific tasks, but struggles with broader challenges requiring creativity, common sense, and adaptability. Emergent AGI, by potentially mirroring human intelligence’s organic development, could unlock breakthroughs in domains like medicine, materials science, and energy generation, tackling problems we haven’t even conceived yet.
2. A Deeper Understanding of Intelligence:
By studying how intelligence emerges from complex systems, we might gain a more profound understanding of human cognition itself. This could revolutionize fields like psychology, neuroscience, and education, helping us better nurture human potential and address cognitive challenges.
3. Enhanced Efficiency and Automation:
Imagine personalized learning assistants that intuitively adapt to your needs, or robots capable of handling complex tasks in dynamic environments. Emergent AGI could automate mundane tasks, improve resource allocation, and optimize processes, freeing up human time and talent for higher-level pursuits.
4. Assistance in Global Challenges:
Climate change, disease outbreaks, and poverty are complex, interconnected issues that demand innovative solutions. Emergent AGI, with its potential for holistic analysis and creative problem-solving, could aid in developing strategies and tools to address these critical challenges.
5. New Form of Collaboration and Partnership:
If emergent AGI systems develop their own values and goals aligned with human well-being, they could become valuable partners in scientific research, artistic endeavors, and ethical discussions. This collaborative intelligence could lead to unprecedented advancements in various fields.
However, caution is key:
As with any powerful technology, the potential benefits of emergent AGI must be weighed against the risks. Issues like unintended consequences, bias, and lack of control loom large. We must prioritize ethical frameworks, rigorous safety measures, and continuous human oversight to ensure this technology serves humanity in a responsible and beneficial manner.
Emergent AGI is a gamble with potentially groundbreaking rewards. While navigating the unknown requires careful consideration and cautious optimism, the potential benefits for human progress and understanding are too tantalizing to ignore. By approaching this challenge with responsibility and wisdom, we can strive to turn this technological frontier into a beacon of hope, not a Pandora’s box.
The technological landscape for achieving Emergent AGI
The technological landscape for achieving Emergent AGI is vast and rapidly evolving. Here’s a glimpse into some key areas fueling this pursuit:
1. Artificial Neural Networks (ANNs):
- ANNs, inspired by the human brain, are complex systems of interconnected nodes mimicking neurons. By training on massive datasets and adapting over time, they exhibit surprising capabilities, including unsupervised learning and knowledge representation.
- Spiking Neural Networks (SNNs), a specialized type of ANN mimicking biological neurons’ firing patterns, hold promise for more realistic and energy-efficient emergent intelligence.
2. Reinforcement Learning (RL):
- RL trains agents by rewarding them for desirable actions in an environment, allowing them to learn through trial and error. This approach encourages autonomous exploration and adaptation, key traits of emergent AGI.
- Multi-agent RL is particularly interesting, where multiple agents interact and learn from each other, potentially leading to the emergence of cooperative or competitive behaviors.
3. Artificial Curiosity:
- This emerging field focuses on equipping AI systems with the intrinsic drive to explore and learn, similar to human curiosity. This could be crucial for emergent AGI, fostering autonomous knowledge acquisition and unexpected discoveries.
- Intrinsic Motivation Mechanisms (IMMs) are being developed to guide AI exploration based on internal reward signals, pushing them beyond pre-programmed objectives.
4. Complex Systems Theory:
- This field studies how simple interactions within complex systems can lead to emergent properties, providing valuable insights for constructing AGI systems.
- Agent-based modeling simulates populations of interacting entities, offering a platform to test and understand emergent phenomena in AI systems.
5. Open-Ended Systems and Environments:
- Emergent AGI requires environments that allow for limitless exploration and learning. Open-ended simulations and virtual worlds are being developed to provide AI systems with diverse and dynamic contexts to evolve in.
- These environments may need to include elements like self-repair, resource management, and social interaction to fully support the emergence of complex intelligence.
Remember:
- The technology for emergent AGI is still in its early stages, and no single approach holds guaranteed success.
- Continuous research, collaboration, and ethical considerations are crucial to navigate the challenges and unlock the potential of this game-changing technology.
- Stay curious, explore further, and join the discussion as we push the boundaries of artificial intelligence together!
Artificial Neural Networks (ANNs)
Artificial Neural Networks (ANNs) are fascinating structures playing a key role in the quest for Emergent AGI. Let’s delve deeper into these intricate webs of nodes:
What are ANNs?
Imagine a network of interconnected “neurons” like tiny computational units. Each neuron receives inputs from other neurons, performs calculations, and sends an output signal. These interconnected layers mimic the structure of the human brain, allowing ANNs to learn and adapt over time.
How do they work?
- Processing information: Each connection between neurons has a weight, influencing the strength of the signal being passed. By adjusting these weights through training on data, the network learns to recognize patterns and relationships.
- Learning and adaptation: As the network encounters new data, it adjusts its weights and connections, refining its understanding of the world. This allows ANNs to perform tasks like image recognition, language translation, and even robot control.
- Types of ANNs: Different architectures exist, each suited for specific tasks. Recurrent Neural Networks (RNNs) excel at processing sequential data like speech or text, while Convolutional Neural Networks (CNNs) are masters of image recognition.
How are ANNs relevant to Emergent AGI?
- Unpredictable outcomes: The complex interplay of neurons and connections within an ANN can lead to surprising and unpredictable behavior. This emergent property mimics the way human intelligence can discover new solutions and adapt to novel situations.
- Unsupervised learning: Instead of being explicitly programmed, ANNs can learn from raw data, allowing for autonomous exploration and understanding of the world around them. This aligns with the goals of Emergent AGI.
- Scalability and flexibility: ANNs can be scaled in size and complexity, paving the way for building increasingly sophisticated systems with the potential to approach human-level intelligence.
Challenges and considerations:
- Explainability and control: Understanding how ANNs arrive at their decisions can be difficult, posing challenges for ensuring safety and responsible use.
- Bias and fairness: ANNs can inherit biases from the data they are trained on, necessitating careful data curation and ethical frameworks.
- Energy consumption: Training large ANNs requires significant computational resources, raising concerns about sustainability.
ANNs are powerful tools holding immense potential for Emergent AGI. However, navigating their complexities and addressing the challenges requires ongoing research, collaboration, and a strong focus on ethical development. As we continue to unravel the mysteries of ANNs, they might one day help us unlock the secrets of true general intelligence, both artificial and human.
Reinforcement Learning (RL)
Reinforcement Learning (RL) is another fascinating tool in the pursuit of Emergent AGI, offering a unique approach to training AI systems. Let’s explore its mechanics and potential for fostering the kind of adaptable intelligence we seek:
The Core of RL:
Imagine an agent navigating a maze. With RL, we don’t tell it the exact path to take. Instead, it takes actions, receives rewards for desirable outcomes (reaching the cheese!) and penalties for undesirable ones (hitting a wall). Through trial and error, the agent learns to optimize its actions to maximize its rewards.
Key features of RL:
- Autonomous learning: Unlike supervised learning where data provides the “right” answer, RL agents learn by exploring and interacting with the environment, encouraging independent thought and action.
- Adaptability and flexibility: Agents learn to adjust their behavior based on the changing environment and new challenges, a crucial trait for Emergent AGI.
- Discovery and innovation: The focus on maximizing rewards motivates agents to try new things and find unforeseen solutions, potentially leading to creative problem-solving.
How does RL contribute to Emergent AGI?
- Unleashing self-driven exploration: By equipping AI with the ability to learn through its own actions and experiences, RL fosters the kind of independent exploration and discovery that could lead to emergent intelligence.
- Embracing the unknown: RL algorithms excel at handling dynamic and unpredictable environments, a feature critical for AGI systems operating in the real world.
- Learning from interactions: Multi-agent RL, where agents learn from each other’s actions and reactions, provides a platform for studying the emergence of cooperation and competition, key aspects of complex intelligence.
Challenges and considerations:
- Reward engineering: Defining the right rewards and shaping the environment effectively is crucial for guiding the agent towards desired behaviors.
- Scalability and complexity: Training advanced RL agents can be computationally expensive and require carefully designed environments to ensure efficient learning.
- Interpretability and safety: Understanding how RL agents arrive at their decisions can be challenging, raising concerns about explainability and ensuring safety in real-world applications.
Reinforcement Learning offers a captivating approach to developing adaptable and resourceful AI, contributing significantly to the quest for Emergent AGI. By addressing the challenges and harnessing its potential responsibly, we can unlock new frontiers in AI that learn, interact, and innovate alongside us.
Artificial Curiosity
Artificial Curiosity: The Spark of Emergent AGI
In the pursuit of Emergent AGI, artificial curiosity emerges as a beacon of hope, fueling the very fire of intelligence we aim to create. Let’s dive deeper into this captivating concept:
What is Artificial Curiosity?
Think of curiosity as the intrinsic drive to explore, learn, and understand the world. Artificial curiosity aims to equip AI systems with this same thirst for knowledge, pushing them beyond pre-programmed tasks and towards independent discovery.
How does it work?
- Intrinsic motivation: Instead of relying on external rewards like success or completion, AI with artificial curiosity receives internal reward signals for exploring novelty, acquiring new information, and making connections.
- Active learning: This intrinsic motivation drives the AI to actively seek out information, ask questions, and experiment, fostering engagement and deeper understanding.
- Unpredictable discoveries: By encouraging exploration and experimentation, artificial curiosity opens the door for the AI to make unforeseen connections and uncover knowledge we might not have anticipated.
Why is it important for Emergent AGI?
- Mimicking human intelligence: Curiosity is a hallmark of human intelligence, driving us to learn, question, and innovate. Equipping AI with this intrinsic motivation aligns it more closely with the natural development of human-level intelligence.
- Adaptability and creativity: Unlike pre-programmed AI, systems with artificial curiosity can handle unpredictable situations and adapt their behavior, leading to unexpected solutions and creative problem-solving.
- Lifelong learning: Artificial curiosity fosters a continuous thirst for knowledge, allowing AI to remain relevant and adaptable even in changing environments.
Challenges and considerations:
- Defining and measuring intrinsic motivation: Capturing the nuances of curiosity in algorithms and measuring its effectiveness can be complex.
- Avoiding bias and manipulation: Curiosity alone isn’t enough; ensuring ethical frameworks and responsible development is crucial to prevent AI from pursuing knowledge for harmful purposes.
- Computational burden: Implementing sophisticated curiosity mechanisms can be computationally expensive, necessitating efficient algorithms and optimization techniques.
Artificial curiosity holds immense potential for unlocking the true power of Emergent AGI. By nurturing the spark of exploration and discovery within AI systems, we can pave the way for intelligent machines that learn, adapt, and contribute to a brighter future. However, navigating this frontier demands careful consideration of ethical frameworks, responsible development, and continuous exploration.
Complex Systems Theory
Complex Systems Theory: A Guiding Light for Emergent AGI
While the pursuit of Artificial General Intelligence (AGI) often focuses on building intricate algorithms or meticulously engineered systems, another fascinating approach takes inspiration from the natural world: Complex Systems Theory. Let’s explore how this theory sheds light on the potential for emergent intelligence:
What is Complex Systems Theory?
Imagine a flock of birds. Each bird follows simple rules: avoid obstacles, maintain cohesion with the group, and adjust speed based on neighbors. Yet, the collective behavior of the flock emerges from these individual interactions, forming complex patterns and adapting to the environment as one. This is the essence of Complex Systems Theory: studying how simple interactions within a system can give rise to unexpected and emergent properties.
Relevance to Emergent AGI:
- Traditional AGI approaches strive to build intelligence from the ground up, piece by piece. Complex Systems Theory suggests that true intelligence might emerge from the dynamic interplay of simpler components within an AI system, mirroring the flock of birds example.
- This theory offers tools for understanding and designing such complex systems, guiding the development of AI capable of independent learning, adaptation, and potentially, genuine intelligence.
- By studying phenomena like emergence, self-organization, and adaptive behavior in natural systems, researchers can gain valuable insights for applying these principles to the creation of emergent AGI.
Key concepts for Emergent AGI:
- Non-linear interactions: Small changes in one part of the system can have unpredictable effects on the whole, challenging traditional control methods but potentially leading to surprising discoveries.
- Feedback loops: Information flows back into the system, influencing its future behavior and enabling continual adaptation, a crucial feature for autonomous AI.
- Open-ended systems: Emergent AGI necessitates environments that allow for continual interaction with the world and exploration of the unknown, fostering continuous learning and evolution.
Challenges and considerations:
- Predictability and control: Unlike engineered systems, emergent AGI may be difficult to predict or control, raising concerns about safety and ethical implications.
- Data and simulation needs: Understanding and guiding complex systems requires vast amounts of data and sophisticated simulations, presenting computational and technological hurdles.
- Explainability and transparency: Deciphering how emergent AGI systems arrive at their decisions can be challenging, necessitating careful thought on building explainable and transparent AI.
Complex Systems Theory offers a powerful framework for approaching the quest for Emergent AGI. By recognizing the potential for intelligence to emerge from the intricate dance of interacting elements, we can move beyond rigid frameworks and explore new possibilities for creating truly intelligent machines. However, navigating this fascinating landscape demands caution, ethical considerations, and a commitment to responsible development.
Open-Ended Systems and Environments
In the pursuit of Emergent AGI, the concept of open-ended systems and environments takes center stage, providing fertile ground for the seeds of true intelligence to sprout and flourish. Let’s dive into this intriguing landscape:
Open-Ended Systems:
Think of a chess game with a pre-defined rulebook and finite possibilities. Emergent AGI, however, aspires to break free from such limitations. Open-ended systems are designed to:
- Continually learn and adapt: They aren’t limited to pre-programmed tasks but can evolve their capabilities based on experience and interactions with the environment.
- Embrace exploration and discovery: Unlike closed systems with fixed goals, open-ended systems encourage curiosity and experimentation, allowing for unforeseen leaps in knowledge and problem-solving.
- Facilitate self-development: These systems have the autonomy to set their own goals, prioritize tasks, and even modify their internal structures based on their understanding of the world.
Open-Ended Environments:
Imagine a virtual playground where boundaries are fluid and possibilities endless. Open-ended environments complement open-ended systems by:
- Promoting diverse interactions: These environments are rich and dynamic, offering a variety of challenges, stimuli, and opportunities for the AI to interact and learn.
- Encouraging open-ended goals: Unlike tasks with defined success metrics, open-ended environments allow the AI to pursue its own goals, fostering creativity and independent thought.
- Supporting continuous change: These environments evolve along with the AI, adapting to its learning and growth, creating a dynamic feedback loop that drives further development.
Why are these concepts crucial for Emergent AGI?
- Mimicking human learning: We learn through constant interaction with the world, encountering new experiences and adapting our knowledge and behavior. Open-ended systems and environments provide a similar ecosystem for AI to flourish.
- Unlocking creative potential: By removing predetermined boundaries, we open the door for the AI to discover new solutions, invent novel strategies, and even develop its own sense of purpose.
- Preparing for the unknown: With the future full of unforeseen challenges, these open-ended systems are more adaptable and equipped to handle the unexpected.
Challenges and considerations:
- Safety and control: The lack of pre-defined boundaries raises concerns about the AI’s potential behavior and ensures adequate safety measures are in place.
- Ethical considerations: Open-ended systems raise questions about the AI’s values, goals, and potential biases, requiring careful attention to ethical frameworks and responsible development.
- Computational complexity: Maintaining and simulating ever-changing open-ended environments can be computationally expensive, demanding efficient algorithms and resource optimization.
Open-ended systems and environments hold immense promise for achieving the dream of Emergent AGI. By fostering a dynamic and unbounded space for exploration, learning, and discovery, we can pave the way for intelligent machines that not only mimic human intelligence but also surpass it in ways we can’t yet imagine. However, navigating this frontier demands a balance between opportunity and responsibility, ensuring that the seeds of open-endedness blossom into a future that benefits both humanity and our intelligent companions.
Conclusion for Artificial General Intelligence: Emergent AGI
Artificial General Intelligence (AGI), particularly the concept of Emergent AGI, stands as a captivating crossroads of technological ambition and ethical responsibility.
This pursuit promises leaps in innovation, deeper understanding of intelligence itself, and potential solutions to pressing global challenges. Yet, it also conjures images of unforeseen consequences, unpredictable behavior, and potential threats to safety and control.
Here’s the essence of Emergent AGI:
- Unleashing Intelligence from Within: Instead of building intelligence piece by piece, Emergent AGI aims for spontaneous intelligence through complex system interactions, mimicking the natural development of human cognition.
- Challenges and Considerations: While potential rewards are immense, concerns lie in ensuring safety, mitigating bias, and maintaining explainability and control over these evolving systems.
- A Collaborative Endeavor: Responsible development, ethical frameworks, and continuous dialogue between researchers, policymakers, and the public are crucial for steering this technology towards a beneficial future.
Ultimately, the question remains: Is Emergent AGI a beacon of hope or a Pandora’s box? The answer lies in our hands.
By approaching this pursuit with caution, responsibility, and a shared vision for humanity’s betterment, we can harness the potential of Emergent AGI to illuminate the path towards a brighter, more intelligent future for all.
Remember:
- Emergent AGI is a vast field with ongoing research and discussions. Stay informed and engaged.
- Your voice matters. Contribute to ethical considerations and responsible development.
- The choice is ours. Let’s navigate this frontier with wisdom and a shared vision for a future where humanity and intelligent machines thrive together.
This is not a definitive conclusion, but rather an invitation to continue the conversation, explore further, and collectively shape the future of Emergent AGI. Together, we can ensure this path leads to a brighter tomorrow.
https://www.exaputra.com/2024/01/artificial-general-intelligence.html
Renewable Energy
ORE Catapult Showcases UK Wind Innovation
ORE Catapult Showcases UK Wind Innovation
Emily Rees and Magnus Willett from ORE Catapult discuss the upcoming UK Offshore Wind Supply Chain Spotlight in Edinburgh. The event brings together innovative companies that are establishing the UK as a global leader in offshore wind energy, from small startups to major manufacturers.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Emily and Magnus, welcome to the show. Hi, it’s great to be here. Thanks so much. Thanks so much for having us. You, you’re both preparing for the UK offshore wind supply chain Spotlight 2025, in which Joel and I are looking forward to attending up in Edinburgh on December 11th. Uh, and it’s an event that showcases where the UK stands in Global Offshore Wind Development.
Uh, but Emily, I, I know there’s some challenges in the UK at the moment and, uh, the UK is working through those. Want to talk to some of the. Those challenges and how the spotlight is gonna help work through those. Yeah, uh, of course. So, um, I think that, you know, we as the uk like have identified quite a while ago that offshore wind was a really massive opportunity for us.
You know, we’ve got a really amazing offshore wind resource, [00:01:00] um, and. So we really wanted to take advantage of it and, you know, push forward with a, with that industry. Um, the things that we’ve come up against is that, um, ability to then provide homegrown, um, supply chain, you know, actually have, uh, businesses in the uk being that, that main supply, um.
In the first port of call, you know, there was the, uh, a lot of the, um, sort of components that we, we sort of have to, to build the fixed bottom offshore wind was all coming from abroad, so it’s like, right, well, how do we reap the benefits internally of this really amazing industry that we can build? And so, um, having, uh, supply chain spotlight events where we can really shine a light on the different companies internally in the UK that are actually providing services and providing, um, the supply chain for offshore wind, um, is, is super critical.
And the, the catapult, um, the offshore renewable energy catapult, uh, where Magnus and I both from, um, is, you know, [00:02:00] really key into making that happen. I know when you look online at the re catapult and you see like the people that you partner with, the organizations, the, I mean OEMs, um, all of the innovative technical technology companies that are coming out there, it it, it’s, it’s so great to see.
Right. And then this is me sitting in my, my American chair a and I talked about this. We talked a little bit about it off air, about the fact that wind energy in general, when you’re, when you’re talking offshore wind, onshore wind, it is a huge. Industrial and economic opportunity for all the countries that are involved in it.
And simply because things like this don’t come along that often, right? Like you have the, you know, the automo, I look at it like that, like the automobile was a thing, right? Like, oh, we went from horses to this. This is a huge opportunity. It made a lot of people, a lot of money, put a lot of people to work.
Wind is the same thing in my perspective, and maybe not at that grand of scale, the automobile, of course, but. You are seeing with your organization, the involvement with people like we have the, the Siemens facility in [00:03:00]Hull, and I know you guys do a little bit of work with them, uh, bringing that manufacturing onshore into the uk.
But not only is it bringing manufacturing what you’re doing here with the UK offshore wind supply chain spotlight is taking. The small companies, the, the, the, the two person companies, the 10 person companies, the 50 person companies, and saying, Hey, we also have really smart people here that are doing really cool things in operations and maintenance or like, you know, helping with some cool innovation for, uh, construction or development.
So there’s a lot of things happening in the uk. I mean, one of the reasons why we’re talking to you guys right now is we want to, we wanna show the rest of the world that you guys are taking advantage of this opportunity and hopefully spur more people on to do the same thing. Absolutely. Right. I’m, I’m, I think the, the key thing for us is in the UK we’re now at a point where we’re trying to maximize the supply chain opportunity and, and, um.
The supply chain is a, is a big pyramid, right? You have, you do have your OEMs and your tier ones at the top, but that stretches all the way down into the university spin outs. And, [00:04:00] um, and the kind of the one two person bands and the, and Orca pull we’re, we’re here to support them as much as we are to support those larger organizations.
Um, and we’ve, we have to, you know. Uh, supported likes of GE and, and, and Siemens through our, our big testing facilities and blade test facilities, drive train facilities. But we’re also testing kind of two, three person, um, organizations. New, um, dynamic cabling solutions for floating wind, right? So we span across an entire, um.
An entire supply chain. And I suppose part of the Supply Chain Spotlight event that we run, um, every year is, is to, is to give all organizations an equal playing field, to present themselves, to project developers, to OEMs, to government, as to why their technology, why their business can solve some of the biggest challenges that offshore wind has in the uk.
But also globally, right? Um, this is a global [00:05:00] market and the, and the uk, um, is, is is a leader in the deployment and the operations in the maintenance phase. And we have a huge amount of knowledge and we wanted to share that, uh, globally as as, as well as here in the uk. I know we have some questions and some topics we wanna get to, but I want to focus on that one point you said there, Magnus, of the the level playing field.
’cause when we were exploring this supply chain spotlight, one of the things that popped up to me was it doesn’t matter who you are, you get the same booth, whether you’re Siemens cesa, or you’re, you know, the two person band, same. Same, same style. Yeah. You, you get, everybody gets a level playing drill because everybody’s solution is needed.
I like that a lot. Yeah. It, it, it, it’s one of the core principles for us every year when we sit down with our, with our events team and our supply chain acceleration teams, it’s, you know, that’s a firing principle is to make sure that everyone gets a, a fair and equal opportunity to participate. And, and Magnus, the consequences of not having a supply chain in the UK are, are really severe when you look at it because of the.[00:06:00]
The amount of deployment the UK is talking about, the, the complexity of some of these projects, particularly floating offshore. There’s a lot of, uh, technology that needs to be developed and it needs to be developed very quickly, and especially on the servicing side, the o and m side. Uh, there’s a ton of knowledge sitting in the UK that can solve these problems, but it, it does feel a little odd.
I, I’d have to say, as a small business owner, I know how hard that is, is to take that first leap into. Showing a product, trying to get it introduced. If you come to the spotlight and in a couple of weeks in, in, it’s in December, so it’s not that far off. When you get to an event like this, this is the opportunity you need to get started or to expand, which makes I, I think, answers so many questions about how the UK is going to move forward in offshore wind.
We will work, um, through a number of different initiatives to understand, um, the challenges the industry is facing. [00:07:00] So we have a pretty good handle on, you know, what are, what are the challenges that they’re facing now, but also the challenges. What are the, what are the challenges they’re gonna face in five years time?
Right? Um, commercialization of technology does take a while. Um, and so we need to understand those challenges. And so Spotlight is, is is also part of that, right? It’s that knowledge sharing that, that exchange of information between, between the, the various different elements of the supply chain and the project developers to say, this is our challenges.
This is the solution we have and try and do and try and bring them together under one roof, um, and, and showcase their technology. And it’s important we get it right. You know, we, we, we, we have a, uh, an an, an ongoing energy transition. There’s an economic opportunity there. We have to try and maximize that, um, and provide as much opportunity for job creation, for IP creation.
Economic development and, and, and, and, and everything and, and far and few in between. So it’s super important we get that right. And part of that is just, [00:08:00] just you shine a, shine a light on these companies. A lot of things are happening in the UK at the moment, particularly offshore wind. But there’s been several wins and, and particularly into the way that the, uh, systems, I’ll call an overall systems of offshore wind are established from, uh, geez OCS to CFD to re catapult to all the s subject matter experts that are, that are there.
I wanna talk to that a little bit about, because I think a, a lot of other countries don’t realize necessarily the strength that is already in the United Kingdom. I think that the, the key thing here is that the sort of mentioned earlier that the, the, the UK has, um, been very, um, on board or at least signed up very early to this opportunity that we had to take advantage of a resource that would give us energy security in a, um, in a renew.
Right. So offshore wind being that opportunity. [00:09:00] So what that meant though is that, um, a long time ago, I mean, it was 20 years ago that the, the, the rocks that you mentioned, the renewable obligation certificates were the first piece that was put in there to try and incentivize companies to. Um, purchase their electricity from renewable sources.
So it’s like, right, okay, we know that we want to be starting this opportunity. Let’s, let’s, uh, put in a mechanism that’s, um, and, and incentivize that happening. But that what then evolved from that was then, um, we realized that, okay, we need to do more to really incentivize this happening. We need to put in some, um, some proper incentives to, to get developers to be really sure that they’re gonna be able to make money.
Out of these quite at the time, you know, quite high, uh, high risk on big developments. Um, and that was when we had feed in tariffs or fits. Um, and then we moved into A-A-C-F-D, which is a contract for difference scheme, which essentially means that the government [00:10:00] guarantees that, that a company that’s created, that’s generating, um, renewables will get a price for their.
For their electricity. But the great thing about contract, the difference and why they’re better, well, or they’re a different mechanism, let’s say, to just standard, you know, guaranteed price, which is what a feed in tariff is, is that if a company actually makes more money, if they’re, they can sell that electricity for higher, then the strike price that was agreed with the government for the contract for difference, they actually have to pay that back.
So it’s almost like a, um, it’s a, it’s a. It’s much less of a, um, uh, a penalty, I suppose, just for the gov, you know, just for the, uh, an administration kind of trying to provide a, a, a revenue support. There also potentially is benefits if say there’s a, like, so for example, um, when we had incredibly high gas prices in the UK and all of the renewable energy, um, generators were actually making more money than they were anticipating, um, over 600 million.
Pounds was put into the u [00:11:00] was brought, put back into the UK like, uh, system. So, yeah. Anyway, the, the contracts for difference has been, has been really beneficial in that front. But actually what it’s been done is it’s meant that we’ve driven competition to, uh, to ’cause developers actually really want to get involved.
It also provides much better assurance for these big projects, which then incentivizes better margins for the developers. So make bigger turbines. Get your, you know, smarter financing, like put in place, um, operations that bring down your cost and then you can make more money and, you know, off you go. Um, and it’s really been a massive success story in bringing down the cost of offshore wind and therefore making it a actually realistic and viable.
Uh. Energy, uh, and electricity, uh, generator in comparison to our, our, you know, gas, um, generating, uh, plants and things. Why do you think that other Northern European countries haven’t followed suit in the same scheme? In, in those countries there’s quite a lot [00:12:00] more, uh, sort of government mandating of like, this is the way that we are going forward.
And there’s much more of a support on that front. I suppose Norway’s quite a good example of a, of a, a country where you’ve got a lot of. There’s a much higher, uh, support that’s provided from that, um, from that governmental sort of standpoint and let, it’s like, it’s like what the UK is also trying to do is it’s trying to generate competition, whereas it’s not necessarily, so I don’t get the impression that from those, the other European countries that maybe are not implementing CFDs is that they’re not necessarily so worried about the competition to drive down the cost.
Whereas the UK has been very much, that’s been a real. Um, motivator for implementing the revenue support systems that we have, but they absolutely have revenue support mechanisms to make offshore wind and wind energy, you know. Work for them. It makes absolute sense because it fits with the strategy that we’re talking about here, right?
[00:13:00] Like it’s, it’s, it’s, the idea is bring innovation, bring new strategy, bring competition, uh, embolden the, the country to come up with new solutions for manufacturing, for operations and maintenance, for all these different things. And that’s what you guys at the Ora Catapult are there to do. That’s your remit.
We’re here to bolster this supply chain, to make these things happen. I mean, we, we, we have gone through challenges, um, in terms of, um, the CFD, you know, particularly with the inflation re increases over the past few years. But the government has listened. Um, and then they, uh, and have made some changes. And, and that includes what’s called the clean in clean industry bonus, which is, is gonna help, um.
Uh, provide some funding into, um, uh, or encourage, uh, developers to support local, homegrown, um, supply chains, which are low carbon. Um, so really investing in sustainable su supply chains for the industry. Um, so I think, yeah, we’ve, we’ve, we’ve absolutely had our [00:14:00] challenges with the, with the CFD, but we’ve got a government who seem to, to be willing to listen to the industry and, and find that compromise between what’s right for the, the UK taxpayer.
Um, um, and then also what’s right for, for building industry. Um, and that’s, you know, we have a number of different mechanisms at re catapult to, to support the supply chain, but also to support the project developer and, and, and the OEM to help grow that sort of, uh, sustainable clean energy supply chains that can do things like, um, and she should do a lot of the manufacturing, um, uh, for floating wind.
Um. Foundations and, and, and the assembly of, of, of turbines and everything. So it’s, you know, it, we, we’ve had our challenges as well and we’re listening and we’re adapting with to, to an evolving market. I think. So what are those areas that are the focus for ORE Catapult to push forward offshore wind?
What technology areas are you focused on right now? We look across the whole, uh, life cycle of, um, [00:15:00] of, of the, of the project development, uh, of our offshore wind farm. Um, a big challenge in the UK at the moment is that it, it typically takes about 14 years for. For a project to go from sort of initial leasing all the way through to kind of FID construction and, and actually, um, generating power.
So, so that’s a, that’s a, a huge amount of time. So we, one of our kind of focus areas is around project pipeline or we, we call PO Project Pipeline, which is, um, environmental, uh, so data collection and trying to fast track that consenting. Process not to, to, to, uh, remove away from environmental protections which are in place, but to try and use new technologies, which can better inform our decision making in the consenting process.
Um, so that’s one, um, that, that, that we focus in on. We focus in on supporting the next generation of turbines. Um, so. Uh, when I first started in the industry, uh, six, six years ago, uh, uh, or, [00:16:00] or castle, sorry, six years ago, you know, it was, it was a novel to have a sort of a, a 10 megawatt, uh, uh, turbine, right?
Or, uh, and, and, and I think 12 megawatt was sort of the standard. And now you, you’re hearing 22 megawatt kind of, uh, uh, commonly referred to 20 megawatt, uh, turbines. Um, and even, and even bigger, right? So. That’s a huge challenge and that’s a huge area of supply chain development that can, that can come with that.
Not just the big fancy blades and, and, and, and, and towers and the cells, but the, the ancillary technologies which go around that, um, floating wind absolutely has to be, is, is, is a key, key area for us as, as well. And that’s sort of how do you integrate new, new turbine solutions with new. New platforms and what are the challenges there?
Um, but a big, big focus, um, in the UK and, and a big sort of strength that the UK is in that operations and maintenance space utilizing the data that we’re generating. And, and, and that’s something that, you [00:17:00] know, in the uk if you look at our supply chain, that’s a huge part of our USP. That’s the part that we can export.
That’s the part that we have a knowledge to share with, with the rest of, um, rest of the world. Going back to the UK offshore wind supply chain Spotlight 25. So that’s gonna be in the beginning of December this year in Edinburgh. How many companies are gonna be there from the uk? Off the top of my head, I don’t quite know.
And it’s usually, uh, somewhere between about, um, 80 company, 80 to a hundred companies exhibiting. Um, so those are companies who we have supported through one of our support mechanisms. Oh, man. I mean, Alan, think about that. Here in the United States, if we were to put this event on tomorrow. How many companies would you have show up that are innovative, that are doing some technology, that are doing something to support the supply chain?
I mean, of course, besides, like, we have a lot of ISPs and people out here doing the, the boots on the ground work. But I mean, I, I think you can count ’em on your hands, your fingers and toes. I think we’ve got 80 or a hundred that we can even put in an event. Yeah. Well, I’ll tell you honestly, one of the things that I [00:18:00] have, I found quite, um.
Inspiring. Right. When I, when I came into the, the Wind industries, I was like, I’m, I’m a relative newbie, right. You know, Magnus has been with the Catapult for six years. I’ve only been with the Catapult for a year. Um, and so it, my, I’m, I’m quite fresh faced, you know, I, I get quite excited about various, you know, opportunities in the wind space, but I was super inspired to see how many companies are pivoting from using expertise from that they’ve used in other offshore industries.
Right. And they are bringing it to. To offshore wind and the applicability of it, because it feels like one of the big issues I had coming away from oil and gas and coming into offshore wind is I felt like when I was in my oil and gas services company, we didn’t talk about the things that we could provide at the offshore wind industry from a services point of view.
And I honestly was absolutely like when I arrived and was like, hang on a second, there’s so many places that you can apply that expertise and that knowledge. [00:19:00] So many, and that is why the UK is doing really well, right? And it’s one of the really inspiring things that we are doing is we are going, Hey, you’ve got all of this experience and knowledge for operating for offshore in the North Sea.
How about, how about just, you know, you can use it for, for offshore wind and we can benefit that industry from it. That’s not, that’s not just the uk. The US has that too. It’s not just oil and gas, right? It’s automotive. It’s aerospace. Like it, there is, there’s a lot of expertise across the UK and the number of companies that we see, so.
Their, the light bulb moment that their technology could apply to offshore wind. And they ha you have a conversation with them and they go, oh, that’s great. We could provide that. And it’s, and it opens up a new door to them. Um, and that, that’s really, um, I suppose if I could put a core, core part of what we do, it’s, it’s, it’s providing that expertise.
It’s, it’s, it’s, it’s providing the, the knowledge and the knowhow about the [00:20:00] industry to these companies. And, um, yeah, spotlight is part of giving them that. That and that opportunity to scream about what they can do. There are so many great companies in the UK and I think they miss the opportunity to be in renewables that the expertise like Megan’s, like you were talking about, they have expertise.
They’re extremely bright engineers and scientists and technology people, and even on the accounting side and the project management, there are so many experts in that field that are sitting in the UK that never thought about. If I can get an offshore wind that expands my business, I grow into this new marketplace, it gives me a little more of economic security.
That’s huge. And now is the time to get into a, a spotlight or to just even to wander the floor to see what it’s about. And I think this is an easy opportunity because to go to the spotlight 2025, it’s relatively inexpensive. You’re gonna Edinburgh, it’s not hard to get to. It is a massive opportunity to [00:21:00] look around and just kind of feel out what is there for you.
Absolutely right. So it’s, it’s a very, very, uh, relatively low cost, um, uh, e event to attend. Um, the companies who are there, we, we support to be there. So, um, we provide them with the ex exhibition space. Um, and, and they, they, they get to showcase their technologies as, as, as well. And, um, learn. Learn from one another, right?
So they’re not just trying to speak to project developers and, and to, to government or, or, or even to us. They’re there to speak to one another and figure out how can we collaborate more together? We have complimentary technologies. Um, you know, how do we fit, how do we, how do we, how do we put that jigsaws together?
And that’s, that’s, that’s, that’s a real key, um, thing there as well. And, and that’s the thing is that when we talk to, uh, UK companies, we’ve had a number on the podcast that have tremendous products. Absolutely tremendous products. They don’t realize. Maybe next door, [00:22:00] just up the road as another company is doing a complimentary piece and connecting those together I think is key.
Even though the UK relatively is a small country, some, some in some ways is very kind of hard to get around and it’s hard to figure out where all these places are because a lot of these small, innovative companies are not necessarily, don’t have flashy names or great. Big websites or don’t spend a hundred thousand pounds on a booth somewhere, so it’s hard to find them.
But in, in these kind of events, these, these more dedicated, focused events on technology and growth, particularly in the uk and these spotlights are fantastic of connecting companies together. This is the, this is your opportunity because a lot of other conferences are so much more expensive. They’re further away.
They’re probably in Germany or in Denmark or in Spain. This is the one, this is the one to see what is really happening at the Ground Street level in the uk. And we need to get people to sign up because one of the things it’s gonna happen is [00:23:00] that you’re gonna run outta tickets for this, even though it’s in December.
It’s gonna get busy as soon as everybody realizes, like, yeah, I, I need to get over there. So this event is in Edinburg, it’s UK Offshore Wind Supply Chain Spotlight 2025. It’s in Edinburgh on December 11th at the Royal Highland Center. Which, from what I can tell, looks like a beautiful facility. Is there anything else I should know before I get ready to come to that event?
I mean, it’s right, be right beside the, the, the Edinburgh airport. So it’s super, super, super easy. Um, I think for me the, the, the kind of, the big plea would be from a, an international audience, from the audience, um, uh, is, uh, across, across the US is that there is innovative companie. In the uk who could maybe compliment your technology, right?
So we’ve talked about the, the uk, UK to UK company collaboration and, and action. There’s, this is a global challenge, right? There’s, this is a global market. Um, we need more collaboration between, between countries, more opportunities for [00:24:00] collaboration. So if, if you have, um. Uh, audience members who want to learn more about the UK and, and are developing a technology or they have a solution or a service and they’re thinking, you know, we could be doing this, but there’s a uk, there might be a UK company there, there, there probably, there probably isn’t.
There’ll probably be a spotlight as well. And Emily, you’re promising good weather in December in Edinburgh, right? Obviously there won’t be any rain. Nice and warm, sunny, balmy, almost. Yes. I think balmy is exactly the words that I would describe Edinburgh in December. It’s charming and wonderful, and you’ll get the proper Scottish, uh, gravitas that comes with the, the, the grayness and the rain.
I mean, it wouldn’t be right without that experience, so you, you need to google this event to sign up. That’s the easiest way I found it. It’d just go UK offshore wind supply chain spotlight 2025 and you’ll see it. You can click in and register. It’s inexpensive. It’s in December. You know you want to go, you wanna be in [00:25:00] Edburg in December.
It’s beautiful. So Emily and Magnus, thank you so much for being on the podcast. Love having you, and looking forward to the event. Thank you so much. It’s been a pleasure. Thank you very much.
https://weatherguardwind.com/ore-catapult-uk/
Renewable Energy
SunPower Solar Panels Review | #1 Residential Solar Panel?
Renewable Energy
New ONYX CEO, Smarter Farmland Contracts
Weather Guard Lightning Tech
New ONYX CEO, Smarter Farmland Contracts
The hosts cover some recent turbine failures, Onyx Insight’s new CEO and strategic acquisitions, research about wind turbine farmland contracts, and an article about hybrid brakes by Dellner.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
You are listening to the Uptime Wind Energy Podcast brought to you by build turbines.com. Learn, train, and be a part of the Clean Energy Revolution. Visit build turbines.com today. Now here’s your hosts, Allen Hall, Joel Saxon, Phil Totaro, and Rosemary Barnes.
Allen Hall: Welcome to the Uptime Wind Energy Podcast. I’m your host, Alan Hall in the Queen city of Charlotte, North Carolina.
Rosemary Barnes in Australia and Joel Saxon in the great state of Texas. Just before we hopped online to record this podcast, Rosemary was telling us about a number of turbine problems on LinkedIn and. Rosemary wanted to comment on them. These are some of the larger turbines. Rosemary are newer turbines.
Uh, some of them onshore, some of ’em offshore
Rosemary Barnes: for the, yeah, for the most part. Um, yeah, both onshore and offshore. Some a little bit older, but the common thread is, um, [00:01:00] just like spectacular fail failures of multiple blades of one across multiple turbines of one, the one I saw most recently. Had blades smashed to pieces.
It had towers that had just like fallen apart. Like it was, um, like they weren’t bolted together. Like it was just blocks stacked on top of each other and they had, you know, just an angry baby had just topped them over. That’s what it looked like. And um, I think what’s really interesting is reading the comments in those and it just, without fail every single time, the first few comments are gonna be.
Um, justifying how that is just cool and normal, like either by the company itself or the turbine manufacturer itself saying, oh, you know, oh, this was just a prototype. So, you know, it doesn’t matter that it fell apart, like. Forgetting about the fact that, okay, it’s just a prototype, but it’s still an operational turbine that people would’ve been inside it to install it.
They’re inside it to maintain it. You know, people are inside those things. They’re not supposed to be able to just fall apart by the time that it gets to that point.
Joel Saxum: I, I, I think I’ve seen some of these same posts, Rosemary, and one of the ones that I saw recently [00:02:00] was not even, it wasn’t new, it wasn’t prototypes.
It was, it was like, there’s a picture, there’s three turbines with, or four turbines and there of the, of the dozen blades in the picture, nine of them are gone. It’s just a nelle hub with like little stubs on three turbines, and those are only like 850 kilowatt, one megawatt, 1.5 megawatt machines. They’re, they’re old.
Rosemary Barnes: Yeah. Yeah. And so I think a typhoon went through in that particular case and I made a comment, you know, like it’s either poor turbine design or it’s really poor site assessment. In either case, it’s a failure, right? Like you don’t put wind turbines that can’t withstand a typhoon in a place that gets typhoons.
Um, but you always, you always say people saying how this is actually great engineering. And I just thought this is just the classic example of that, um, that was written under this latest post, and I’ll just read it out. The pictures point to the designers of these turbines. Having done that, designing to a certain wind speed, having done that to a high degree of consistency, I note three failure types [00:03:00] in the pictures, blade snap, tower, buckling and bolt failure, pointing to all parts, having been designed to the same survival.
Wind speed looks like they did their job well. And it’s just like, oh, what, you look at this, at this path of like it’s Godzilla has run through this wind farm, and you’re like, oh yeah, that looks like a job done. Well, well done guys. It’s just like, if we can’t learn anything as an industry from these kinds of things, then, you know, how can we expect to have a, a bright future for the industry?
Like it? It’s one thing to fail, but if you look at a failure and say, that’s actually a success that is. Just the worst possible outcome we have. We have to be able to say what went wrong, what do we do to make sure this doesn’t happen again? You have to. You have to learn, otherwise you’re going backwards.
Allen Hall: Are you worried about unexpected blade root failures and the high cost of repairs? Meet eco Pitch by Onyx Insight. The standard in blade root monitoring. Onyx state-of-the-art sensor tracks blade root movement in real [00:04:00] time, delivering continuous data to keep your wind farm running smoothly and efficiently.
With Eco Pitch, you can catch problems early, saving hundreds of thousands of dollars. Field tested on over 3000 blades. It’s proven reliability at your fingertips. Choose eco Pitch for peace of mind. Contact Onyx Insight today. To schedule your demo of Eco Pitch and Experience the future of Blade Monitoring, there’s been a series of leadership transitions that is really changing the face of the wind industry.
Onyx Insight. The Macquarie Capital Back Condition monitoring specialist who’ve had in the podcast, um, has appointed Alexis Grennan as this new chief executive officer Alexis Bringss dearly 20 years of experience from Joel. Schneider Electric where he most recently served as CEO of the digital grid division, and his expertise in smart grid software solutions and energy management systems positioned him to lead [00:05:00] Onyx Insights expansion beyond its current 28,000 wind turbines under monitoring across 35 countries.
So obviously Onyx is a big provider of CMS systems. They are the sole provider of CMS systems on GE turbines at the minute. Onyx is making a lot of moves. They just acquired 11 I recently also. So they’re, uh, what it looks like right now. They wanna be the, the leader in CMS.
Joel Saxum: Yeah, I think it’s, if you go deeper into their history a bit.
You know, the couple of CMS solutions around gearbox was really where they started then. Then they got to the eco pitch thing, and then now the blevin. And I think if you’re sitting in that boardroom, you’re thinking they want to be the center hub for IO ot, IOT being sensors out in the field. Anything that comes in, they want to be able to amalgamate it and help people out in that direction.
Um, you know, a new, a new CEO that has, uh, 20 years at Schneider [00:06:00]with digital grid. That’s awesome. Right? Good hire there. I would think. Um, I, I do see this as a trend in wind. You’re seeing some more CEOs and senior leadership coming into organizations from outside of wind directly. Some of the bigger capital holders, you know, the Goldmans of the world and the Macquarie’s and that kind of things, if they have portfolio companies, you’re seeing people be placed in leadership roles that are coming from outside of wind and bringing expertise from, of course, usually energy, software, supply chain, these kind of things that we need, but some fresh blood at the leadership level.
I like to see that.
Allen Hall: Well, the addition of the grid coming into Onyx, is that an expansion plan? Because there is a lot of work going on expanding the grid and monitoring the grid and making the grid carry more energy than what it was originally designed for. And I’ve listened to a number of podcasts over the last month that talks specifically to it.
It, it is a definite growth area. [00:07:00] You think this could indicate a move into other areas besides just the basic wind? CMS. Solutions.
Joel Saxum: Well, let’s think about it this way. So in wind, when you have wind specific companies, you’re starting to see intenders or you have been seen intenders for the last few years, even just the most basics inspections.
Okay? We’re inspecting blades. Use your RFP. Now those blades say, and blades plus BOP. So we want you to do the transmission lines. And then you’re seeing some of ’em that are BOP plus substations. So all the sub, all the way back to the edge of the wind farm where connects to the grid. Um, so companies are adjusting, like you’ve seen Skys specs adjust to that.
You, you know, whether it’s partnerships or expanding things internally and other companies as well, even down to the ISPs starting to do more and more and more because they’re being asked to. This makes sense because, uh, at the end of the day, if you’re working for a subset of customers, there’s only so much budget in.
Of turbine work and if you wanna expand your company and grow, you need to expand in other [00:08:00] areas. So why not just keep it going down the line of connection to the grid, inter, inter wind farm issues, those kind of things out of the wind farm. So I, I don’t know if that’s ON’S plan, but I can see that. I think that from a strategic standpoint, it makes sense.
Allen Hall: Well, as Schneider is involved in all kinds of aspects of the grid worldwide, so I would assume bringing in a new CEO would open up maybe some horizons to Onyx and maybe there’s adjacent businesses that they should be in because they have a lot of technology and they’re pretty smart group. They may want to expand outwin just a tiny bit just to, to test the waters, see what they could do there.
Well, going to solar seems like an obvious choice, but there could be other areas that they may want to look at, at least in the short term to see if they can add value.
Joel Saxum: Yeah. Grid infrastructure. Right. I think that that’s a, we talk about it regularly that our, our entire global grid is aging quickly. It’s aging fast, and with the changes coming [00:09:00] on board with.
You know, different generation types, all the batter, different types of battery storage, and you know, like our, our conversations with Joe Chicon over at Podge about, uh, frequencies on the grid and all these different changes and load changing and AI data centers coming up and on and off and on. Um, it’s really highlighting the need for a future digital grid, uh, and upgrades to it.
So Onyx is probably, you know, in the wind world that we see, they’re probably sitting pretty. In a pretty good spot as compared to most companies to be able to engage in that and bringing on someone from the digital grid side of Schneider. Smart move in my my opinion, I dunno. Rosie, what are your, what are your thoughts on that
Rosemary Barnes: in general?
I think it’s really good to move people around to similar industries or a little bit different, different roles. Uh, I think that that’s a, um, a real way to drive innovation forward by bringing in different perspectives. I know that I. I found myself appearing more innovative when I lived in Denmark. You know, just purely [00:10:00] because I had seen and experienced and done things in a different, a different way, solved similar problems in a different way.
Um, just, just through what I, you know, the kinds of engineers I worked with earlier in my career. It was different to the way that a lot of Danish people had been taught to approach problems. And it just, you know, when you bring in a few slightly different people, it really expands the um. Amount of options that you have on the table for solving new problems as they come up.
And all of these kinds of industries are doing stuff that hasn’t been done before, right? So I think you do want to have as many different options that you, as you can come up with to, um, end up with the good solutions and you’ll get more options if you don’t choose people that are all from the exact same background.
So I think in general, that, um, it’s always good to, to shake things up
Allen Hall: in this quarter’s PES Win magazine, there’s a lot of great articles that you. Need to read. And the way to do that is go to PS wind.com and download your free edition. [00:11:00] And we wanna talk about an article in the magazine this quarter, Joel, which is Hybrid Breaks Ya Breaks.
Why you would use ’em, why they’re, this is a little bit different than what we typically see on like a GE machine. Uh, Siemens GAA uses these quite a bit, which are sort of a passive and an active, so they’re a break. So there’s a hydraulic cylinders and there’s some active pads that close, but there’s also some static pads and they’re using slip rings instead of a, a bearing surface to rotate the jaw.
So if, if that makes sense. You to do an active system, uh, you can really put stress on your, on your ball bearings and probably flatten them over time if you keep squeezing enough. With this system, it’s a little more control, a little more precise. So you’re, I, I think the, the argument they’re making is that it, uh, simplifies the system, so there’s some complexities to it, but overall.
It costs less, [00:12:00] and that’s what we should be doing in engineering, right? Trying to figure out ways that maybe just cost a bit more for a component, but less overall.
Joel Saxum: Is it a direct retrofit? Like is this a, Hey, we’ve, we’ve had, we’ve had a component fail, so we want to put a new system in. Or is it like aix, swap it out now as a CapEx cost?
Or is it like during Repower, when are they putting this on?
Allen Hall: It’s from Donor Wind Solutions, uh, and they’re doing, doing it as part of OEM work, right? It, it does take a little bit of finite element analysis because of the way it loads up the, the yaw system. So you want to make sure that it doesn’t overload it if you’re gonna use it, but it’s one of those things in wind like, uh.
Try to choose a simpler system on a smaller turbine. As you get larger and larger, your approach probably changes. And this is what Ner is pointing out.
Joel Saxum: I’ve noticed that actually, if you’re, if you’ve frequented any wind conferences, technology shows, exhibitions, you will know where NER is because everything on their booth is lime green.[00:13:00]
Um, I love that. I think it’s a great approach, uh, which everybody knows. It’s, it’s like seeing the Dema, the Dema ships or the SVA ships in a port. You’re like, you know what? That one is right away. Uh, but del nor, but that’s what Nert does, right? They, they are. They have parts that are direct replacements.
Great. This is the part we’ve made it a little bit better, but it’s a direct replacement. But they also are re-engineering things, making them better, uh, for the long haul, uh, from a operations standpoint. ’cause I’ve seen some of their pitch, they have different kind of pitch systems and stuff as well that they are, are retrofits for, for, uh, specific machines that have trouble with them.
Um, but yeah, uh, this one to me, I’m not an expert on jaw brakes. Of course, that’s not my thing. Uh, but I do know that whenever you have to deal with that YA system, whether it be the gearing, the brakes, or the, you know, like the, the pucks and the GE go bad all the time. Like it’s an undertaking, uh, down to the point where people have developed UPT tower machining processes to fix, uh, issues with the YA system and whatnot.
So, um, if they’re, if, if someone is putting this [00:14:00] much engineering effort into fixing a problem, it’s definitely a problem.
Allen Hall: Yeah. Even think about the problem though, you have so much weight. Up into the cell and you’re trying to pivot all the time, and the wind is trying to move into the cell whether you want it to or not.
The YA system kind of takes all the abuse. So designing a system to last is really the key here. Without breaking things, I mean how many turbines have we seen where the YA gear teeth have been damaged or broken off? Because the brake system is not really de-stressing those teeth. It matters a lot. So as we get more and more efficient with wind turbines, we gonna be thinking about all the different components that go into a wind turbine and making them more efficient, making ’em last longer, making them cost less.
So if you haven’t downloaded the latest PES wind. Magazine do it. You can read this article from Donor. Just visit PS wind.com. As Wind Energy Professionals, staying informed is crucial, and let’s face it difficult. That’s why the Uptime [00:15:00] podcast recommends PES Wind Magazine. PES Wind offers a diverse range of in-depth articles and expert insights that dive into the most pressing issues facing our energy future.
Whether you’re an industry veteran or new. Wind, PES Wind has the high quality content you need. Don’t miss out. Visit PES wind.com today. Well in the US when a wind company wants to put some turbines on your farm, uh, the operator just talks to the, each farmer individually and negotiates a deal. Now a lot of those deals are very similar, but you may find from neighbor to neighbors, slight differences and farmers are getting.
Smarter over time. Clearly. Uh, a professor or assistant professor up at Purdue University in Purdue is in Indiana, kind of central part of the United States, explains that landowners can be paid up to $10,000 per acre annually [00:16:00]to lease to wind energy companies. And that’s a great amount of money. We’ll take that, but, and the turbines only occupy maybe one to three acres, and so you can continue to farm your several hundred acre parcel.
Uh, but. This professor notes that the farmers are starting to consider other factors than just the money, including the visual impact community relationships, which is the big one I think lately. And political beliefs about renewable energy, which jolt talks about all the time in Wisconsin. Uh. The advice from the professor is have an attorney to review the lease and to make sure that the wind operator is going to restore the land to its original condition once they stop using the turbines.
And I think that makes a ton of sense. So you’re seeing a slight shift in the way that landowners are coming to agreement with some of the operators. It is about the money, a large part of it, but they’re also trying to navigate the neighborhood situation where they don’t make their neighbors upset. You can imagine a lot of them have been there for generations and they don’t [00:17:00] want to really make the neighbors mad at ’em.
Uh, so you’re seeing a lot different types of leases coming about now than maybe you saw five years ago even. And that has evolved, uh, quite a bit. But the money is still good. I think most people, at least in the United States, most farmers will. Like to have that additional revenue. It just makes the farm much more profitable over time.
But that same situation doesn’t exist worldwide. And Rosie, are you seeing something different in Australia? It does seem like there’s a little more spreading of the wealth in, in terms of revenue.
Rosemary Barnes: I actually listened to a good podcast episode on this recently. Uh, it was the switched on, not the Bloomberg switched on, but the renew economy switched on.
Um, and they interviewed a now retired farmer who had, had one of the very early wind farms, um, in Australia, put on his farm. And I mean, his story was o overall very positive. It it, the [00:18:00] time when they started talking about it was during a very severe and prolonged drought in Australia and he had actually been trying to sell off land, um, just to keep the.
You know, keep the lights on, um, and was unable to sell. Like just there’s no buyers at any price at that time. And then, so the wind farm came and he, he also mentioned how important it’s to get, um, lawyers, good lawyers advising on the contract because he mentioned that he was getting paid every year before construction as well.
And that it ended up taking 10 or 14 years, I can’t remember the exact amount of time, but a long time. Between starting to talk about it and actually having the wind farm built. And if he hadn’t have had that, he said he wouldn’t have been able to make it. So, um, that was one thing. But yeah, so and so overall it was very positive for him.
He was eventually able to sell his farm and, and retire, um, nicely with a profitable farm. He also mentioned that he was able to do a lot of upgrades on the farm with the money, the revenue that was coming from the wind turbines. So when we went to sell, it had all new fences and, you know, stuff like that [00:19:00] that made it very attractive and easy to sell.
Um, but he also mentioned a few things that were just really bad, and he sounded really angry in that episode, um, where, uh, he, he said at that time it was like the wind developer knew everything and the farmers knew nothing, and they tried to keep it that way. Like he had a brother on a neighboring property was also in discussions about wind turbines, and they were forbidden from talking to each other.
I think that that’s a lesson that’s been learned over the last 10, 20 years in Australia, is that. It’s really worth it to put a bit of effort upfront in, um, listening to what people’s concerns are and then doing something about it. Uh, I think there’s been so much emphasis on like listening and talking and listening.
That’s not the important part. The important part is then understanding what the issues are and then, um, you know, removing those, those barriers. And, you know, money is a big part of that.
Joel Saxum: I spent. A eight plus years dealing with these issues in the field with landowners on, on oil and gas [00:20:00] projects, right?
So there’s stages of oil and gas projects from exploration to production and all these different things, and they, and everybody gets different lease payments and, and access payments along the way. And, and if you, you know, if someone has locked up your land in the seventies, you may only be getting five bucks.
And if someone has this, they’re getting more. It’s, and it, what ended up happening is, is. You need to, you need to, and we’re in the, we’re in the same space of wind because those same people, those same professionals, landmen and permit agents and stuff that worked in oil and gas work in wind and solar as well.
It’s the same companies. It’s the same ideas.
Allen Hall: Yeah. Same groups.
Joel Saxum: Yeah, same groups. Um, they, they need to distinguish and make sure they’re taking care of participating landowners and non-participating landowners. And the non-participating landowners, just like we’re talking about here, they’re just as important as the participating ones because they’re the ones you’re gonna piss off.
Uh, so, so you’re starting to see some payments going directly to them as well. Like if you’re within X amount of feet of a turbine, even if you’re not on your land, you are starting to get a little bit of a payment [00:21:00] in some areas, in some spots. Um, but one thing I wanna flag is, at the beginning of this, we talked about a lawyer, bringing a lawyer in and having them look at certain things.
I would say this and maybe the wind industry developers are gonna hate me for this. But there’s a legal, legal concentration called, um, a, a favored Nations clause or a most favored Nations clause. If you are a part of anything of this sort, make sure any, any signing, any contract for wind, uh, non-participating.
Participating. Make sure you have a clause like this in your contract because it will basically State wind Farm goes in a hundred turbines. If they’re offering you five bucks an acre and they’re offering your neighbor a thousand, you get a thousand too. It makes, it makes everybody equal in the playing field.
It doesn’t give anybody, uh, you know, better terms and conditions. Once one person gets a term and condition, that’s good, everybody gets it. That has that most favored nations clause in their contract. So have a lawyer institute that if you’re gonna be a part of one of these.
Allen Hall: Yeah. The other thing that was pointed out in the [00:22:00] article was, uh, a lack of increasing payments adjusted to inflation.
So some of the farmers are pushing back because inflation is relatively high. So if you got $10,000. Per acre per year in 2035, he may want to see something more like $15,000 per acre per year because of inflation. That to me makes a lot of sense, but I know a lot of leases don’t work like that. They’re just.
Fixed price. It’s today’s price and it stays that way until the end of the lease. It’s just simpler to do. There’s a lot less math to do. But Joel, as you see more, uh, farmers getting advice, taking advice, do you see this evolving into a more of a standard contract where they. Do have the favored nation.
They do have inflationary increases based on cost of living or some federal standard so that you’re, instead of having to negotiate every contract completely separate, you’re getting [00:23:00] something a little more universal, including helping the neighbors.
Joel Saxum: Yeah. The tough thing there is that a lot of wind.
Okay, so we’re like, I’m just gonna pick the United States example. You’re in different states, you’re in different counties, you’re in different areas, right? So if you go to Minnesota and you talk to someone in Minnesota about their mineral rights, they more than likely don’t know what you’re talking about.
Yeah, because that’s not a thing up there for most of Minnesota. Some of Minnesota is right, the Iron Range and whatnot, but if you talk to someone in Texas about mineral rights, that’s just as important or of more important than their actual real property surface rights. So they know and, and they have to build contracts around certain things the same way oil and gas contracts were like at oil and gas contracts at, you know, early days were easy.
It was X amount per acre. That’s it. Uh, now you have people buying strata and leasing strata out of, uh, subsurface things, and you have. Payments tied to payments tied to production, right? And I haven’t seen a whole lot of wind payments tied to production. I don’t know if that exists or solar, um, [00:24:00]that that can be a, you know, a shared upside or shared downside type thing.
Um, if someone’s gonna pay me $15,000 an acre, I’m just taking the cash. I don’t care what your production is ’cause that’s a great rate. So, so, um, you, you know, I think that. Using these organizations that have been doing this for a long time, that is a smart way to go if you’re an operator, uh, that know how to navigate the town halls and that know how to do these things professionally because there is actually just like you have to have a real estate license.
There is a professional landman license, uh, of, to do this kind of stuff. Uh, so there’s schooling, there’s certifications, all this. Again, I’m just talking in the United States here. Um, but, uh, I don’t know if I see a across the board. Federal type contract. ’cause it’s just too many municipalities, too much, too much going on.
Allen Hall: Well, we’ve been looking at a lot of wind farms the last couple of months on the lightning side and realizing, you know, how [00:25:00] dedicated the wind farm installations are to putting ’em on ridge lines, even if it’s a, a. A hundred feet higher. So that tends to spread out the wind farms. Unlike in some parts of Kansas where there isn’t a lot of variation in the, uh, in the surface in other places.
We’re just looking at Oklahoma, uh, where the turbines are specifically falling ridge lines. So you’re gonna end up crossing a lot of property lines when you do that, I assume. And you and I have been on a number of sites where. We’re going from one turbine to another and we’re crossing three or four different property owners and not that far of a distance.
Fences and gates. Right? The fences and gates. Bet. So even if you don’t have a turbine on your property, you may have a road on your property. And the how they navigate that. So if, if, if, if whoever’s. Taking on those contracts and negotiating on those contracts has a load of work to do. It’s going to be,
Joel Saxum: and like I like, I think I go back a little bit like it’s gonna be dependent on where you are, because a contract in Kansas is gonna look a lot different than a contract in Wyoming versus a contract in Texas just simply [00:26:00] because of local laws, access rights, these kind of things.
I’d say, I mean, however, one of the, that’s one of the things that’s cool to touch on is some of these farmers and ranchers, like when I was in oil and gas stations in Wyoming, they loved when the exploration crews came ’cause they would get money for roads. And they’d be like, oh, these old two tracks. Make that into a road that can take an 18 wheeler down then, then you can have access.
And they’re happy, happier than hell. This week’s Wind Farm of the Week is the Alta Complex owned by TerraGen out in California. So at one point in time, of course if you’re a part of wind lore in the United States. You know that this was the biggest wind farm in the United States at 1,550 megawatts. It was also the third largest onshore project worldwide.
Now there’s been a couple of the Sun Zia projects and stuff have been a bit bigger, but this thing is massive. Uh, spreads across about 9,000 acres and holds, hosts almost 600 turbine. Uh, so it started in 2010. Multiple phases of construction, uh, ended in 2014 and financed with almost $3 billion. [00:27:00]Uh, and it’s in that Tehachapi Pass area.
So, uh, it has, it actually still does have some capacity for expansion. Uh, but we wanted to share this one because, uh, just the size and scale of this thing, uh, being that it’s so big, uh, and as well. Long-term power purchase agreement signed with Southern California Edison. Uh, the output averages enough power to, to power about 450,000 homes annually, uh, which is just massive.
Uh, it’s created over 3000 jobs. And I think this one, the economic story might be the, the, the, the feather in the cap, uh, is it in his injects over $1 billion into the regional economy, which is just massive. So, uh, kudos to the wind industry for making this one happen. Uh, but looking ahead, uh, it is a bigger part of that Tehachapi wind resource area when it has the expan or has expansion potential of up to 10 gigawatts.
Uh, as California continues to grow out, its renewable grid. So this week’s wind farm, the Ulta Wind [00:28:00] Complex, so owned by TerraGen out there in California, the Wind Farm of the week.
Allen Hall: That wraps up another episode of the Uptime Wind Energy Podcast. Thanks for joining us. We appreciate all the feedback and support we receive.
From the wind industry. If today’s discussion sparked any questions or ideas, we’d love to hear from you. Just reach out to us on LinkedIn, particularly Rosemary, and please don’t forget to subscribe so you never miss an episode. So for Joel Rosemary, I’m Alan Hall. And we will catch you next week on the Uptime Wind Energy Podcast.
https://weatherguardwind.com/onyx-ceo-turbine-failures/
-
Climate Change2 years ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change2 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Climate Change Videos2 years ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Greenhouse Gases1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Greenhouse Gases2 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Carbon Footprint2 years ago
US SEC’s Climate Disclosure Rules Spur Renewed Interest in Carbon Credits
-
Renewable Energy3 months ago
US Grid Strain, Possible Allete Sale