Connect with us

Published

on

As global temperatures persist in rising to concerning new highs, national governments, multinational corporations, small businesses, and individuals are all urgently exploring ways to substantially reduce greenhouse gas emissions and mitigate climate change risks. One increasingly popular and impactful method that is gaining significant traction is the use of carbon credits to provide powerful financial incentives for businesses and consumers to cut emissions and support the rapid development of renewable energy sources.

This informative post is the 4th installment in our acclaimed new series based on our organization’s highly regarded 2023 Climate Change and Carbon Markets Annual Report.

The previous posts in this illuminating series so far have been:

In this post, we will take a closer look at various energy sources and strategies, emphasizing the importance of diverse solutions like fuel switching, renewables, nuclear energy, and carbon capture to combat climate change and achieve a sustainable energy future..

The Wedge Theory – A Portfolio Approach to Emissions Reductions

Climate experts propose a “wedge theory” framework to conceptualize the portfolio of solutions needed to reduce greenhouse gas (GHG) emissions and stabilize the climate. This approach requires deploying diverse technologies and strategies, each providing a “wedge” of avoided emissions adding up to the total reductions needed. The original theory called for 7 wedges, but emissions have continued rising, so 9 are now required. Wedges include renewables, nuclear energy, fuel switching, energy efficiency, forests and soils, and carbon capture and storage.

Understanding Fuel Switching

Fuel switching entails replacing carbon-intensive fuels like coal and oil with less carbon-intensive ones like natural gas. For example, switching from coal to gas can decrease power plant emissions by 60% per kilowatt-hour.

  • Coal: 25 metric tons carbon per terajoule
  • Oil: 20 metric tons carbon per terajoule
  • Natural Gas: 14 metric tons carbon per terajoule

So switching to gas provides a “bridge” to zero-carbon energy systems. The shale gas boom enabled by hydraulic fracturing accelerated this trend in the United States. However, the environmental impacts of techniques like fracking cannot be disregarded.

Nuclear Energy: A Renewable Source?

Nuclear energy, often hailed as a clean energy source, is derived from the process of splitting uranium atoms through fission. This fission process heats water to produce steam, which in turn spins turbines, ultimately generating electricity. The entire procedure emits no greenhouse gases, making it an attractive option in the fight against climate change. However, the question of whether nuclear energy can be classified as “renewable” remains a topic of contention among experts and environmentalists. While it offers a more sustainable alternative to fossil fuels, concerns about radioactive waste, the finite nature of uranium resources, and potential safety risks make its categorization as a renewable energy source debatable.

Harnessing Inexhaustible Sources: The Role of Renewables

Renewable energy derived from inexhaustible natural sources like sunlight, wind, and water offers immense potential with little to no GHG emissions. Growing renewables is crucial for climate change mitigation.

Solar Energy: Ever Improving Technologies

Solar energy, a cornerstone of renewable power sources, harnesses the abundant energy radiated by the sun. This is achieved primarily through two technologies: photovoltaics (PV) and concentrated solar plants. Photovoltaic cells, commonly known as solar panels, are designed to directly convert sunlight into electricity. They achieve this transformation using specially crafted semiconductor materials that capture photons and initiate an electric current. One of the standout features of solar PV systems is their adaptability. They can be installed on a grand scale for utility purposes, powering entire communities or even cities. Alternatively, they can be set up in smaller, distributed configurations, such as on rooftops of individual homes, allowing homeowners to generate their own electricity and even feed excess power back into the grid. As technology continues to advance, the efficiency and applications of solar energy are bound to expand, making it an even more integral part of our energy landscape.

Geothermal Energy: Tapping into Earth’s Heat

Geothermal energy is a remarkable form of power that taps into the Earth’s innate thermal energy stored beneath its crust. This energy originates from the radioactive decay of materials deep within the planet and the original heat from Earth’s formation. In regions with pronounced subsurface temperatures, often marked by volcanic or tectonic activity, the potential for generating geothermal electricity is especially high. The typical process involves accessing hot water reservoirs located below the surface. This water, when pumped up through specialized wells, transforms into steam due to the pressure difference. This steam then propels turbine generators, converting the Earth’s heat into usable electricity. As a sustainable and environmentally friendly energy source, geothermal power offers a consistent and reliable alternative to more conventional power generation methods.

Hydro and Wind: Leveraging Flowing Resources

Hydropower converts the kinetic energy of flowing water into electricity using turbine generators. Dams with reservoirs
offer reliable large-scale hydro electricity, while run-of-river systems have lower impact.

Wind power harnesses the kinetic energy of wind, again turning turbines to produce power. Onshore and offshore wind farms are rapidly expanding as costs plummet.

But hydropower and wind face challenges in location constraints, transmission needs, and intermittency. Still, they are vital and growing pieces of the renewables puzzle.

Bioenergy: Leveraging Natural Carbon Sinks

Bioenergy stands out as a unique form of renewable energy because it taps into the chemical energy naturally stored within organic materials. This energy is derived from both living organisms, like plants and animals, and those that have recently died. A diverse range of sources, including forest biomass, residues from agricultural activities and livestock, as well as various waste streams, can be converted into renewable electricity, fuels for transportation, and heat for homes and industries.

However, it’s essential to approach bioenergy with a discerning eye. While it holds great potential, not every form of bioenergy is environmentally beneficial. For instance, clearing vast expanses of forests to cultivate energy crops can lead to significant carbon emissions and disrupt delicate ecosystems. This not only negates the carbon benefits but also poses threats to biodiversity. Looking at the positive aspects, bioenergy can be obtained from waste biomass or cultivated on lands that are not suitable for other agricultural purposes. This not only provides a sustainable solution, but also has a positive impact on the climate. Such practices ensure that greenhouse gas emissions are minimized, making bioenergy a viable and eco-conscious energy alternative.

Waste-to-Energy: Capturing Landfill Gas

Landfill gas (LFG) projects prevent methane emissions from landfills by capturing methane for flaring or energy use. Methane is a potent greenhouse gas, so converting it to CO2 via combustion provides immediate climate benefits. LFG projects also reduce local air pollution.
Captured LFG can be used onsite for electricity, heat, or even vehicle fuel. These projects provide environmental and socio-economic benefits to communities near landfills.

Sequestering Carbon: Storing Away Emissions

Carbon capture, utilization, and storage (CCUS) aims to balance continued fossil fuel use with equivalent carbon storage elsewhere. CCUS removes CO2 from large point sources like power plants or directly extracts CO2 from ambient air. The carbon is then stored via injection into geologic formations, old oil and gas reservoirs, or chemical conversion into stable solids.
While technologically feasible, CCUS still faces challenges with scaling up infrastructure, ensuring permanent storage, and lowering costs. More investment is needed to develop CCUS into a viable wedge.

The All-Out Effort Needed

Bending the global emissions curve downwards requires urgent economy-wide action across all sectors. Intelligently leveraging fuel switching, nuclear energy, renewables, bioenergy, and eventually carbon storage provides paths to a carbon-neutral future. But the clock is ticking. Successfully activating these climate wedges demands policies, partnerships, and funding on a massive scale. Our future depends on rising to this great challenge.

To learn more about the role fuel switching plays in fighting climate change contact us for the full report.

——

Photo by Jason Blackeye on Unsplash

Carbon Footprint

China’s Renewables Soar: 18 Months of Stable Emissions Mark Turning Point

Published

on

china renewable

A recently published report from CarbonBrief explained that China’s carbon dioxide (CO2) emissions have shown signs of stabilization for the past 18 months, from March 2024 through the third quarter of 2025. This marks a major shift for the world’s largest emitter, as strong renewable energy growth and electric vehicle (EV) adoption begin to offset emissions from heavy industry.

china emissions

China’s Renewable Boom Drives a Historic Emissions Slowdown

The global renewable boom adds further momentum. International Energy Agency’s (IEA) Renewables 2025 report shows that the world added over 510 GW of renewable capacity in 2024 — the fastest pace in history. Another 520 GW is expected in 2025, with solar making up nearly 75% of new installations.

China alone contributes nearly 60% of the world’s renewable capacity — around 1,400 GW in total. Renewables now supply over 35% of China’s electricity, up from 27% in 2020.

Notably, China’s emissions have remained flat or slightly fallen for six consecutive quarters — a remarkable change after decades of growth. The key driver behind this trend is the country’s unprecedented expansion of renewable energy capacity.

  • According to the IEA, in 2025 China added about 240 gigawatts (GW) of solar and 61 GW of wind capacity in the first nine months alone, setting a new global record.

Solar power generation rose 46% year-on-year, while wind increased by 11%. These clean energy gains allowed China to meet rising electricity demand — which grew by 6.1% in Q3 2025 — without increasing fossil fuel use.

china renewables
Source: IEA

Furthermore, power-sector CO2 emissions held steady in the third quarter, supported by renewable growth and small boosts from nuclear and hydropower. As renewables continue to expand, they are covering nearly all of the new electricity demand in China.

Electric Vehicles Cut Transport Emissions

The rapid growth of electric vehicles has been another key factor in flattening China’s emissions curve. The CarbonBrief report highlighted that in the third quarter of 2025, transport fuel emissions dropped by 5% year-on-year, as more drivers switched from gasoline and diesel cars to EVs.

This trend also highlights China’s policy success in electrifying its vehicle fleet. The country leads the world in EV production and adoption, supported by strong government incentives and expanding charging networks.

However, emissions from other oil-consuming sectors rose by 10%, driven mainly by a surge in chemical and plastics production. This increase in industrial demand offset the transport sector’s emission gains and kept total oil-related emissions slightly higher.

China ev adoption

Industrial Emissions Paint a Mixed Picture

While China’s renewable and EV progress is impressive, heavy industries continue to weigh on its emission profile. In the third quarter of 2025:

  • Cement and building materials emissions fell 7%, reflecting a prolonged real estate slowdown.
  • Steel sector emissions declined 1%, even as output dropped 3%.

Interestingly, lower demand in steelmaking was absorbed mostly by electric-arc furnace (EAF) producers, who are less carbon-intensive. Yet, China’s transition toward cleaner steelmaking remains slow due to entrenched coal-based production and limited policy enforcement.

Meanwhile, chemical industry emissions surged, with both coal and oil consumption rising sharply in 2025. This sector has become a major emissions hotspot, offsetting gains in construction and power generation.

Gas demand also grew modestly — 3% overall — with power sector consumption up 9%. While natural gas emits less CO2 than coal, its rising use still adds to total emissions.

china coal

2025 Emissions: A Fine Balance

  • As of late 2025, China’s total CO2 emissions stood around 15.1–15.2 gigatonnes, making up roughly 30–35% of global emissions.

That’s about the same level as last year, showing a fine balance between sectors reducing emissions and others increasing them.

September 2025 provided a positive signal: emissions fell about 3% year-on-year, raising the likelihood that the full-year total will show a slight decline. Since electricity demand — and thus emissions — usually peak during hot summer months due to air conditioning, the fourth quarter will determine whether 2025 records an actual drop.

CarbonBrief also analysed that even a 1% decrease or increase would hold major symbolic value. China’s policymakers have repeatedly said that emissions can still grow before 2030, leaving the exact “peak year” undefined. A small drop in 2025 could signal that the country’s emissions have already plateaued ahead of schedule.

Despite its renewable energy boom, China is set to miss its 2025 carbon intensity target, which aimed to reduce CO2 emissions per unit of GDP by 18% compared with 2020 levels. Current data suggests that only about a 12% reduction has been achieved.

CHINA EMISSIONS 2025

China’s Long-Term Climate Strategy: The Path to 2030

To meet its 2030 goal — a 65% reduction in carbon intensity from 2005 levels — China will now need a much steeper 22–24% cut over the next five years. This will require stronger emission control measures, industrial efficiency improvements, and faster deployment of low-carbon technologies.

The shortfall also raises the stakes for China’s 15th Five-Year Plan (2026–2030), which will likely set a more ambitious emissions reduction framework.

President Xi Jinping’s announcement in September 2025 introduced a new 2035 greenhouse gas target — to cut total emissions by 7–10% below peak levels. However, since the peak year remains undefined, the level of that peak will directly determine how steep future reductions must be.

If China’s emissions peak closer to 2030, achieving the 2035 target would require more drastic cuts. But if the peak already occurred around 2024–2025, the path toward carbon neutrality becomes smoother.

In conclusion, China’s next few years will define its climate legacy. The nation’s renewable leadership has already reshaped global clean energy markets. The next challenge lies in translating that power into sustained, absolute emission reductions — a crucial step toward a genuine net-zero future.

The post China’s Renewables Soar: 18 Months of Stable Emissions Mark Turning Point appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Meta’s $600 Billion AI Bet: Building the Next Generation of Data Centers

Published

on

Meta’s $600 Billion AI Bet: Building the Next Generation of Data Centers

Meta has announced one of the biggest technology investments in history — over $600 billion by 2028 to build new artificial intelligence (AI)-ready data centers across the United States. The plan aims to boost computing power, support local economies, and promote sustainability.

This huge spending marks a turning point for both Meta and the wider tech industry. As demand for AI grows, so does the need for energy, data processing, and new infrastructure. Meta’s goal is to meet this demand while keeping its projects efficient and climate-friendly.

Building the Next Generation of AI Infrastructure

AI systems require enormous amounts of computing power. A 2024 study reported that U.S. data centers consumed over 4% of the nation’s electricity in 2023. They also emitted about 105 million tonnes of CO₂ equivalent, making up more than 2% of total U.S. emissions. With AI workloads growing rapidly, these figures will rise further.

  • Meta plans to bring over 1 gigawatt of AI computing power online by 2026, supported by its purchase of more than 1.3 million GPUs this year.

These centers will have high-performance chips and strong cooling systems. These facilities will manage AI training and storage for products like Facebook, Instagram, and WhatsApp. They will also support future apps using generative AI.

The company said the new centers will be designed for both speed and sustainability. Each site will include advanced energy-saving technologies, improved water-cooling systems, and high-efficiency servers.

Meta also plans to team up with energy companies. They want the electricity for their data centers to come from renewable sources, like solar and wind. In one notable example, it is partnering with Blue Owl Capital on a $27 billion AI data center project in Louisiana. It shows both the scale of financing and the strength of public-private partnerships.

This expansion is expected to create thousands of construction and tech jobs across several states. Local communities near Meta’s campuses, such as in Iowa, Texas, and Utah, have gained from previous investments. New data centers should provide similar benefits. This includes better infrastructure and training programs for the workforce.

Greener Tech, Bigger Goals

Meta says sustainability is central to its $600 billion plan. The company adds 15 gigawatts of new clean energy capacity across the country. This helps modernize the grid and expand clean energy.

The company aims to reach net-zero emissions across its entire value chain by 2030. It already claims to run its global operations with 100% renewable energy, but future growth will test that commitment.

Meta is expanding its renewable energy partnerships. It is also signing long-term power purchase agreements to meet its climate goals. It also aims to use new tools that will help measure and cut emissions from construction materials, transportation, and hardware manufacturing.

Meta renewable energy projects map
Source: Meta

Water management is another focus. Many data centers require large volumes of water for cooling. Meta aims to be water-positive by 2030. This means it will restore more water to local ecosystems than it uses. Projects to restore wetlands and protect river basins are already underway near its U.S. facilities.

SEE MORE ON META:

Racing to Power the AI Boom

Meta’s move reflects a major trend across the tech industry: the race to build AI-capable infrastructure. AI models are getting bigger and more complex. They need more computing power and energy than ever.

  • According to industry surveys, 85% of current data centers are not yet AI-ready, underscoring the importance of this next-generation buildout.

In the past year, top tech firms have announced new spending on AI infrastructure. The total adds up to hundreds of billions of dollars. Meta’s $600 billion push sets a new benchmark and signals how serious this competition has become.

However, this rapid expansion also raises new challenges. Data center growth is putting pressure on electricity grids, land use, and local resources. Analysts warn that without strong planning, this surge could lead to higher energy costs or strain local water supplies.

data center electricity demand due AI 2030
Source: IEA

At the same time, the sector is innovating fast. Engineers are testing several solutions. They’re looking at liquid-cooling systems, heat-recycling technologies, and AI-based monitoring tools. These aim to cut down on waste. Many experts believe the next generation of data centers will be far more energy efficient than the ones built just a few years ago.

Big Tech Moves: Microsoft, Google, and Amazon

Meta is not alone in investing heavily in AI-ready data centers. Other big tech companies are building up their infrastructure. They need to handle the rising demand for cloud computing and AI workloads.

  • Microsoft plans to invest about $80 billion in AI and data centers.

The tech giant has over 400 facilities around the globe. The company continues to grow its Azure regions, creating thousands of construction and tech jobs. Microsoft teams up with local governments and utilities. This helps its projects boost renewable energy and support community growth.

  • Amazon/AWS runs about 135 hyperscale data centers.

The ompany invests billions each year to grow their cloud infrastructure. Its projects in states like Pennsylvania and Virginia create many jobs. This includes both construction and ongoing operations. Amazon often engages local suppliers and workforce programs to maximize regional economic benefits.

  • Google has around 130 hyperscale sites worldwide.

It is also investing billions in AI-focused facilities, with projects in Germany and India. These centers help create local jobs, including technical and construction roles. They also support community development efforts. Google emphasizes energy efficiency and clean power, aligning its growth with environmental and sustainability goals.

big tech AI data center planned growth 2030
Data source: Company announcements and industry news

These moves reveal a clear trend: major tech firms are racing to create next-gen infrastructure. They aim to boost economic growth, create jobs, and provide regional benefits.

At the same time, they face shared challenges, including land use, energy supply, and community impact. These companies work with local authorities and invest in renewable energy. This helps them grow while also being responsible.

What Lies Ahead for Meta and the Data Center Market

In the next 5 years, analysts expect a big increase in global demand for data center capacity. This is especially true for facilities built for AI workloads. If Meta’s $600 billion plan proceeds on schedule, the company could add several gigawatts of new computing capacity by the end of the decade.

This growth will also influence renewable energy markets. To power so many facilities sustainably, Meta and other tech firms will need to secure long-term renewable energy deals, invest in energy storage, and help modernize aging power grids.

Industry observers say this could create a positive cycle: as more companies demand clean power, utilities will have a greater incentive to expand renewable generation. The challenge will be ensuring that this transition happens fast enough to match the pace of AI adoption.

If Meta keeps its promises, this project might show how big AI systems can grow while being eco-friendly. The next few years will show whether the company’s vision — of technology that empowers both people and the planet — can truly become a reality.

The post Meta’s $600 Billion AI Bet: Building the Next Generation of Data Centers appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Carbon Sinks and Carbon Credits: How Nature and Innovation Are Fighting Climate Change

Published

on

As the planet faces mounting climate threats, carbon sinks have become crucial allies in reducing greenhouse gases. These natural and artificial systems absorb and store carbon dioxide (CO2) from the atmosphere, helping to balance human emissions.

Beyond their environmental role, carbon sinks also generate carbon credits, which drive climate finance and support global net-zero ambitions. This article explores the world’s largest carbon sinks, their significance, and how carbon credits are fueling a low-carbon economy.

Nature’s Carbon Vaults: Forests, Oceans, and Soils

Forests: Earth’s Green Lungs

Forests are among the most powerful carbon sinks on the planet. Globally, they absorb around 30% of CO2 emissions from human activities. Trees capture carbon through photosynthesis and store it in biomass and soils. Boreal forests in Russia hold the largest terrestrial carbon stock, followed by tropical forests in the Amazon and Congo Basin, and temperate forests in the U.S. and China.

Yet forests are under threat. In 2023 and 2024, extreme wildfires and deforestation sharply reduced forest carbon uptake. Bolivia, for example, suffered its largest fire season in 2024, releasing 400 million metric tons of CO2. These events turned forests from carbon sinks into net emitters, highlighting the urgent need for forest conservation, restoration, and sustainable management. Protecting forests is essential to avoid overloading natural systems that cannot absorb unlimited carbon.

READ MORE:

Oceans: The Planet’s Largest Carbon Sink

Oceans absorb roughly 25-30% of human-generated CO2 and about 90% of excess heat from global warming. They store carbon through biological processes and chemical absorption, sequestering it in water, sediments, and marine life.

However, rising ocean temperatures are weakening this sink. In 2023, oceans absorbed nearly a billion tons less CO2 than usual—equivalent to about half of the European Union’s annual emissions. Reduced solubility of CO2 in warmer water threatens climate stability. Protecting marine ecosystems and limiting ocean warming are critical to maintaining this natural buffer.

Blue carbon credits

READ MORE: 

Soils and Peatlands: Hidden Giants of Carbon Storage

Soils store more carbon than the atmosphere and living vegetation combined. Through regenerative agriculture—practices like cover cropping, crop rotation, and reduced tillage—soil carbon can be enhanced. Peatlands, though covering just 3% of the land, hold vast carbon reserves. Yet drainage and degradation turn them into net emitters. Restoration efforts not only recapture carbon but also revive biodiversity, making them dual-purpose climate solutions.

Collectively, forests, oceans, and soils absorb around half of anthropogenic CO2 emissions, serving as crucial buffers against climate change. But these systems are finite and vulnerable. Recent data show that relying solely on natural sinks without reducing fossil fuel emissions is risky.

REGENRATIVE AGRICULTURE

MUST READ:

Artificial Carbon Sinks: Technology Steps In

While natural sinks face limits, innovation offers new pathways. Artificial carbon sinks aim to capture and store CO2 at scale.

Direct Air Capture (DAC) extracts CO2 directly from the air and stores it underground or uses it in industrial applications. Bioenergy with Carbon Capture and Storage (BECCS) combines biomass energy production with carbon capture to achieve net removals. Though promising, these technologies require scaling, investment, and supportive policies to complement natural sinks.

By combining natural and artificial solutions, the world can accelerate progress toward net-zero emissions while reducing the pressure on fragile ecosystems.

KNOW MORE: 

Carbon Credits: Turning Carbon into Climate Finance

Carbon credits are tradable instruments representing verified reductions or removals of CO2. They provide financial incentives for businesses, landowners, and countries to invest in climate-positive projects.

Key Ways Carbon Credits Are Generated

  1. Renewable Energy Projects
    Projects replacing coal and fossil fuels with solar, wind, or other renewables generate credits from avoided emissions. Initiatives like the Coal to Clean Credit Initiative (CCCI) also prioritize social sustainability by supporting communities affected by the transition.
  2. Forestry and Land Use Projects
    Credits arise from afforestation, reforestation, avoided deforestation, and forest conservation. Regenerative agriculture and agroforestry also sequester carbon in soils while improving biodiversity and water quality.
  3. Agricultural Methane and Waste Management
    Capturing methane from livestock manure, landfills, and biogas plants generates credits. These projects prevent potent greenhouse gases from entering the atmosphere.
  4. Industrial Energy Efficiency and Green Hydrogen
    Improving industrial processes to cut emissions or producing green hydrogen through renewable-powered electrolysis offer emerging credit opportunities.
  5. Soil Carbon and Peatland Restoration
    Enhancing soil carbon and restoring degraded peatlands generate removal credits, reversing emissions while improving ecosystem health.

carbon credits issuances

Verification and Standards: Every carbon credit project must measure and report its emissions reductions against a baseline. Third-party verification under standards like Verra, Gold Standard, or CCCI ensures transparency and environmental integrity.

SEE MORE: 

The World’s Largest Carbon Sinks

WORLDS LARGEST CARBON SINK

Conclusion: Balancing Emissions with Action

Carbon sinks—forests, oceans, and soils—remain indispensable in the fight against climate change. They stabilize the climate while providing biodiversity, water, and social benefits. Artificial carbon sinks and verified carbon credits further amplify their impact, linking environmental action with economic incentives.

Recent data from 2023-2025 show that natural sinks are under increasing stress: wildfires, deforestation, rising ocean temperatures, and soil degradation all reduce carbon absorption. Experts warn that relying on sinks alone to balance emissions is dangerous.

However, these systems are not unlimited. Without major emission reductions, natural sinks risk being overwhelmed. A holistic climate strategy combines:

  • Immediate cuts in fossil fuel emissions.
  • Protection and restoration of natural sinks.
  • Deployment of artificial carbon removal technologies.
  • Robust carbon credit frameworks to fund climate action.

Through this integrated approach, the world can safeguard natural carbon reservoirs, promote innovation, and accelerate the transition to a low-carbon economy. The message is clear: protecting and enhancing carbon sinks is not optional—it is essential for achieving net-zero goals and securing a resilient, sustainable future.

MUST READ:

The post Carbon Sinks and Carbon Credits: How Nature and Innovation Are Fighting Climate Change appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com