Connect with us

Published

on

As global temperatures persist in rising to concerning new highs, national governments, multinational corporations, small businesses, and individuals are all urgently exploring ways to substantially reduce greenhouse gas emissions and mitigate climate change risks. One increasingly popular and impactful method that is gaining significant traction is the use of carbon credits to provide powerful financial incentives for businesses and consumers to cut emissions and support the rapid development of renewable energy sources.

This informative post is the 4th installment in our acclaimed new series based on our organization’s highly regarded 2023 Climate Change and Carbon Markets Annual Report.

The previous posts in this illuminating series so far have been:

In this post, we will take a closer look at various energy sources and strategies, emphasizing the importance of diverse solutions like fuel switching, renewables, nuclear energy, and carbon capture to combat climate change and achieve a sustainable energy future..

The Wedge Theory – A Portfolio Approach to Emissions Reductions

Climate experts propose a “wedge theory” framework to conceptualize the portfolio of solutions needed to reduce greenhouse gas (GHG) emissions and stabilize the climate. This approach requires deploying diverse technologies and strategies, each providing a “wedge” of avoided emissions adding up to the total reductions needed. The original theory called for 7 wedges, but emissions have continued rising, so 9 are now required. Wedges include renewables, nuclear energy, fuel switching, energy efficiency, forests and soils, and carbon capture and storage.

Understanding Fuel Switching

Fuel switching entails replacing carbon-intensive fuels like coal and oil with less carbon-intensive ones like natural gas. For example, switching from coal to gas can decrease power plant emissions by 60% per kilowatt-hour.

  • Coal: 25 metric tons carbon per terajoule
  • Oil: 20 metric tons carbon per terajoule
  • Natural Gas: 14 metric tons carbon per terajoule

So switching to gas provides a “bridge” to zero-carbon energy systems. The shale gas boom enabled by hydraulic fracturing accelerated this trend in the United States. However, the environmental impacts of techniques like fracking cannot be disregarded.

Nuclear Energy: A Renewable Source?

Nuclear energy, often hailed as a clean energy source, is derived from the process of splitting uranium atoms through fission. This fission process heats water to produce steam, which in turn spins turbines, ultimately generating electricity. The entire procedure emits no greenhouse gases, making it an attractive option in the fight against climate change. However, the question of whether nuclear energy can be classified as “renewable” remains a topic of contention among experts and environmentalists. While it offers a more sustainable alternative to fossil fuels, concerns about radioactive waste, the finite nature of uranium resources, and potential safety risks make its categorization as a renewable energy source debatable.

Harnessing Inexhaustible Sources: The Role of Renewables

Renewable energy derived from inexhaustible natural sources like sunlight, wind, and water offers immense potential with little to no GHG emissions. Growing renewables is crucial for climate change mitigation.

Solar Energy: Ever Improving Technologies

Solar energy, a cornerstone of renewable power sources, harnesses the abundant energy radiated by the sun. This is achieved primarily through two technologies: photovoltaics (PV) and concentrated solar plants. Photovoltaic cells, commonly known as solar panels, are designed to directly convert sunlight into electricity. They achieve this transformation using specially crafted semiconductor materials that capture photons and initiate an electric current. One of the standout features of solar PV systems is their adaptability. They can be installed on a grand scale for utility purposes, powering entire communities or even cities. Alternatively, they can be set up in smaller, distributed configurations, such as on rooftops of individual homes, allowing homeowners to generate their own electricity and even feed excess power back into the grid. As technology continues to advance, the efficiency and applications of solar energy are bound to expand, making it an even more integral part of our energy landscape.

Geothermal Energy: Tapping into Earth’s Heat

Geothermal energy is a remarkable form of power that taps into the Earth’s innate thermal energy stored beneath its crust. This energy originates from the radioactive decay of materials deep within the planet and the original heat from Earth’s formation. In regions with pronounced subsurface temperatures, often marked by volcanic or tectonic activity, the potential for generating geothermal electricity is especially high. The typical process involves accessing hot water reservoirs located below the surface. This water, when pumped up through specialized wells, transforms into steam due to the pressure difference. This steam then propels turbine generators, converting the Earth’s heat into usable electricity. As a sustainable and environmentally friendly energy source, geothermal power offers a consistent and reliable alternative to more conventional power generation methods.

Hydro and Wind: Leveraging Flowing Resources

Hydropower converts the kinetic energy of flowing water into electricity using turbine generators. Dams with reservoirs
offer reliable large-scale hydro electricity, while run-of-river systems have lower impact.

Wind power harnesses the kinetic energy of wind, again turning turbines to produce power. Onshore and offshore wind farms are rapidly expanding as costs plummet.

But hydropower and wind face challenges in location constraints, transmission needs, and intermittency. Still, they are vital and growing pieces of the renewables puzzle.

Bioenergy: Leveraging Natural Carbon Sinks

Bioenergy stands out as a unique form of renewable energy because it taps into the chemical energy naturally stored within organic materials. This energy is derived from both living organisms, like plants and animals, and those that have recently died. A diverse range of sources, including forest biomass, residues from agricultural activities and livestock, as well as various waste streams, can be converted into renewable electricity, fuels for transportation, and heat for homes and industries.

However, it’s essential to approach bioenergy with a discerning eye. While it holds great potential, not every form of bioenergy is environmentally beneficial. For instance, clearing vast expanses of forests to cultivate energy crops can lead to significant carbon emissions and disrupt delicate ecosystems. This not only negates the carbon benefits but also poses threats to biodiversity. Looking at the positive aspects, bioenergy can be obtained from waste biomass or cultivated on lands that are not suitable for other agricultural purposes. This not only provides a sustainable solution, but also has a positive impact on the climate. Such practices ensure that greenhouse gas emissions are minimized, making bioenergy a viable and eco-conscious energy alternative.

Waste-to-Energy: Capturing Landfill Gas

Landfill gas (LFG) projects prevent methane emissions from landfills by capturing methane for flaring or energy use. Methane is a potent greenhouse gas, so converting it to CO2 via combustion provides immediate climate benefits. LFG projects also reduce local air pollution.
Captured LFG can be used onsite for electricity, heat, or even vehicle fuel. These projects provide environmental and socio-economic benefits to communities near landfills.

Sequestering Carbon: Storing Away Emissions

Carbon capture, utilization, and storage (CCUS) aims to balance continued fossil fuel use with equivalent carbon storage elsewhere. CCUS removes CO2 from large point sources like power plants or directly extracts CO2 from ambient air. The carbon is then stored via injection into geologic formations, old oil and gas reservoirs, or chemical conversion into stable solids.
While technologically feasible, CCUS still faces challenges with scaling up infrastructure, ensuring permanent storage, and lowering costs. More investment is needed to develop CCUS into a viable wedge.

The All-Out Effort Needed

Bending the global emissions curve downwards requires urgent economy-wide action across all sectors. Intelligently leveraging fuel switching, nuclear energy, renewables, bioenergy, and eventually carbon storage provides paths to a carbon-neutral future. But the clock is ticking. Successfully activating these climate wedges demands policies, partnerships, and funding on a massive scale. Our future depends on rising to this great challenge.

To learn more about the role fuel switching plays in fighting climate change contact us for the full report.

——

Photo by Jason Blackeye on Unsplash

Carbon Footprint

Eni Picks Saipem for $590M Carbon Capture Project in UK’s Liverpool Bay

Published

on

Eni Picks Saipem for $590M Carbon Capture Project in UK's Liverpool Bay

Italian company Saipem has won a major contract from Eni to help build a new carbon capture and storage (CCS) project off the coast of northern England. The contract is worth about €520 million ($590 million) and is part of the HyNet industrial cluster. It is a major effort to cut emissions in one of the UK’s most carbon-heavy regions and support the country’s net-zero goal.

The Liverpool Bay CCS project will capture carbon dioxide (CO2) from industries across North West England and North Wales. The captured CO2 will then be transported through a network of pipelines and stored deep underground in old gas fields under the Irish Sea. These fields, such as Hamilton, Hamilton North, and Lennox, are owned by Eni.

The project is possible to complete in about three years and will play an important role in helping the UK meet its net-zero emissions goals. It could also create over 1,000 local jobs during the construction period, giving the economy a boost.

What Saipem Will Build: Connecting the Carbon Dots

As part of the project, Saipem will be responsible for the engineering, procurement, construction, and commissioning support of a new CO2 compression station at Point of Ayr in North Wales.

This new facility will replace an old gas processing plant. Instead of handling natural gas, the new station will compress CO2 and send it to storage sites offshore. It will connect with both the project’s onshore and offshore parts, ensuring that the captured carbon can be transported safely and permanently stored underground.

In addition to the new compression station, other work includes:

  • Retrofitting existing offshore platforms to handle CO2 instead of natural gas
  • Repurposing 149 kilometers (about 93 miles) of existing pipelines
  • Building 35 kilometers (about 22 miles) of new pipelines to link factories and other carbon sources to the network

These efforts will ensure that CO2 captured from factories, power plants, and other industrial sites can be securely stored and kept out of the atmosphere.

Zeroing In on the UK’s Net Zero Goals

The UK government has made carbon capture and storage a key part of its plan to fight climate change. It will spend £22 billion over 25 years on carbon capture and storage (CCS) to help reach its net-zero goal by 2050.

UK net zero roadmap
Source: IEA

CCS captures carbon from heavy industries and stores it underground. But rising costs mean only 3 of the 8 planned projects will go ahead. These include the East Coast Cluster, led by BP and Equinor, and HyNet in western England and Wales.

  • Together, they aim to remove about 3 million tons of CO₂ per year—much less than the 20 to 30 million tons first planned.

Critics say this could keep the UK tied to natural gas for years and slow down the shift to clean energy like wind and solar. The National Audit Office warns about delays, rising costs, and past CCS failures. CCS could help reduce industrial emissions. However, experts say more investment in renewables and energy efficiency is needed for a truly green future.

The government approved the HyNet project in October 2024.

Companies, like Heidelberg Materials, which makes cement, are ready to send their CO2 for storage. Other partners include Viridor, Ineos, Fulcrum Bioenergy, and Progressive Energy.

The Liverpool Bay CCS project aims to cut emissions from tough-to-clean industries, such as cement manufacturing and waste-to-energy plants. The project captures and stores CO2. This helps stop millions of tons of greenhouse gases from entering the atmosphere each year.

Liverpool Bay will store up to 4.5 million tonnes of CO2 each year in its first phase and increase that to 10 million tonnes annually after 2030. This effort directly supports the UK’s goal to store 20 to 30 million tonnes of CO₂ per year by 2030.

Eni Liverpool Bay CCS project
Source: Liverpool Bay T&S

Eni recently got funding from the UK’s Department for Energy Security and Net Zero (DESNZ). This support lets them proceed with construction.

In addition, Eni has received three carbon storage licenses from the North Sea Transition Authority (NSTA). These licenses cover the development of a storage system capable of holding 109 million tons of CO2 over the next 25 years.

This project is a major piece of the UK’s broader effort to reach net-zero emissions by 2050.

Saipem’s Growing CCS Business

For Saipem, the Liverpool Bay contract is another big win in the growing field of carbon capture and storage. The company reported a total backlog of €32.7 billion ($37.2 billion) at the end of March 2025, with CCS projects playing an increasing role.

Saipem said that the Liverpool Bay project shows how energy companies can reuse existing oil and gas infrastructure to support the energy transition. By converting old pipelines and platforms to handle CO2, the industry can cut costs and speed up the move toward cleaner energy.

In addition to the Liverpool Bay project, Eni is working on another CCS initiative in the Bacton Thames area in the southern North Sea. This project, called the Bacton Thames Net-Zero Initiative, aims to capture CO2 from industries around Bacton and the Thames Estuary. It could even accept CO2 from factories in the European Union, expanding its impact beyond the UK.

Turning the Tide in Liverpool Bay

The Liverpool Bay CCS project shows how old fossil fuel infrastructure can be given a new life in the clean energy era. Pipelines and platforms will now help fight climate change. They will safely store carbon underground instead of producing and transporting natural gas.

Construction on the new compression station at Point of Ayr and upgrades to the wider pipeline network will ramp up soon. If things go as planned, the Liverpool Bay CCS system may start capturing and storing CO2 by the end of the decade. This could significantly boost the UK’s climate efforts.

The region is leading by turning carbon-heavy industries into cleaner ones. This shows how industrial hubs worldwide can help meet global climate goals.

The post Eni Picks Saipem for $590M Carbon Capture Project in UK’s Liverpool Bay appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Netherlands Invests $726 Million in Aramis CCS as Shell and Total Shift Strategies

Published

on

Netherlands Commits $726 Million to Aramis CCS as Shell and Total Shift Strategies

The Dutch government has committed $726 million (639 million euros) to the Aramis carbon capture and storage (CCS) project, the largest of its kind in the Netherlands. This major investment comes after energy companies Shell and TotalEnergies decided to reduce their financial support for part of the project.

Shell and TotalEnergies had originally planned to help fund the construction of a large pipeline system. This pipeline would connect factories and industrial areas to underground storage sites in the North Sea.

However, both companies have now chosen to focus only on developing the carbon storage sites and offering carbon storage services. They pulled out of investing in the pipeline infrastructure.

Without government help, Aramis’s future was uncertain. In response, the government stepped in to cover the risk and keep the project moving forward. Climate Minister Sophie Hermans said that the decision would help ensure that the country could still meet its climate goals, saying:

“This takes away a large part of the risk in the project.”

How Aramis Will Trap Carbon and Cut Emissions

The Aramis project is designed to capture carbon dioxide (CO₂) from industries and transport it to underground storage locations. These sites are in empty gas fields deep under the North Sea. Once stored, the CO₂ will stay underground permanently, preventing it from entering the atmosphere and contributing to climate change.

Aramis CCS project Netherlands
Source: Aramis

Aramis plans to transport up to 22 million tonnes of CO₂ every year. The system will be open-access, meaning many different industrial companies can use it. The goal is for construction to finish by 2030, after a final investment decision in 2026.

The pipeline is a central part of the Netherlands’ plan to reduce its carbon emissions. The country wants to cut emissions by 55% by 2030 compared to 1990 levels

Netherlands greenhouse gas emissions
Source: European Parliament

Although emissions were 37% lower than 1990 levels as of 2024, government experts warn that current policies are not strong enough to meet the 2030 target. Projects like Aramis are seen as essential to closing that gap.

By capturing and storing carbon from hard-to-decarbonize sectors like cement, chemicals, and steel, Aramis will help industries reduce their impact without shutting down operations.

Shell and TotalEnergies Shift Gears: What It Means

Shell and TotalEnergies’ decision to back away from the pipeline part of Aramis reflects a larger shift happening among European energy companies. In recent years, many companies have set ambitious climate goals and promised large investments in renewable energy

However, competition from American oil and gas companies, who stayed focused on fossil fuels, has made it harder for European firms to keep up financially.

Now, some European energy giants are slowing down their clean energy plans to focus again on their core oil and gas businesses. Shell, for example, announced in 2023 that it would focus more on delivering value to shareholders and less on expanding renewable energy investments.

Despite reducing their funding, Shell and TotalEnergies are still involved in Aramis. They will work with Gasunie and Energie Beheer Nederland (EBN) to develop two offshore CO₂ storage sites. They also plan to offer carbon storage and transport services once the system is built.

With Shell and TotalEnergies pulling back on pipeline investment, state-owned EBN and gas grid operator Gasunie will take greater control of the Aramis infrastructure. They will jointly own and operate the pipeline system as a 50:50 partnership.

Building a Carbon Capture Superhighway

Aramis is not the only CCS project underway in the Netherlands. Several other infrastructure projects are linked to it, helping to build a broader carbon capture network.

One of these projects is CO₂next, a new terminal being built by Gasunie, Vopak, Shell, and TotalEnergies. Located in Rotterdam’s Maasvlakte area, the terminal will allow ships to bring in or ship out liquid CO₂. The CO₂next terminal will connect to the Aramis pipeline system, making it easier for industries not directly connected to the pipeline to use CCS services.

Another related project is the planned expansion of the Porthos compression station. This station will help compress CO₂ so that it can be safely pushed into storage sites under the sea.

In addition to these projects, the Dutch government announced a new €8 billion ($8.6 billion) package to support renewable energy, electric vehicles, and other sustainable technologies. Industries will also receive compensation to help deal with high energy prices, which can make the transition to cleaner energy harder.

Why CCS Matters More Than Ever

Carbon capture and storage is becoming an important tool in the global fight against climate change. Some industries, like cement and steel, are very hard to decarbonize.

Even with new technologies, they are likely to continue producing some emissions for years to come. CCS offers a way to deal with these emissions by capturing them before they enter the atmosphere.

According to the International Energy Agency (IEA), reaching net-zero emissions by 2050 will require capturing more than 7.6 billion tonnes of CO₂ globally each year. Right now, global CCS capacity is much smaller — only about 50 million tonnes per year — so major expansion is needed.

As of 2024, the following is the global CCS project trend per McKenzie’s data.

CCUS global projects 2024 by region

Several European countries are investing heavily in CCS. Norway’s Longship project and the United Kingdom’s East Coast Cluster are examples of large CCS hubs being developed. The Netherlands hopes that by investing early, it can become a leader in carbon capture services for Europe.

By supporting Aramis, the Dutch government is not just working toward national climate goals. It is also protecting its industrial economy and creating new business opportunities for the future.

If it succeeds, the Aramis project could guide other countries. They can learn how to balance economic growth with climate action. It also boosts Europe’s efforts to use CCS technology. 

As the energy transition continues, partnerships between governments and businesses will be crucial. The Netherlands’ bold move to back the Aramis CCS project shows a clear commitment to finding practical solutions to the climate crisis — even as market dynamics shift and corporate strategies evolve.

The post Netherlands Invests $726 Million in Aramis CCS as Shell and Total Shift Strategies appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

France Launches High-Integrity Carbon Credit Charter to Boost its Net Zero Progress

Published

on

france

At one of Europe’s biggest climate events, ChangeNOW 2025, France made a major move toward building a stronger, more credible carbon market. On April 24, 2025, French Minister for Ecological Transition, Biodiversity, Forests, the Sea, and Fisheries, Agnès Pannier-Runacher, unveiled a new Charter for Paris-aligned and High-Integrity Use of Carbon Credits.

This launch marks an important step to further push the progress happening since the launch of the 2015 Paris Agreement.

The session also brought together some of the most influential voices in climate action like Simon Stiell, Executive Secretary of the UNFCCC; and Dr. Osama Faqeeha, Saudi Arabia’s Deputy Minister of Environment and President of COP16 under the UN Convention to Combat Desertification.

They stressed that urgent, real-world action like credible climate solutions is needed to move closer to global net-zero goals.

France’s Emissions Drop but Natural Carbon Sinks Also Shrink

France accounted for 12.4% of the EU’s total greenhouse gas (GHG) emissions. Overall, France’s total emissions dropped by 31.2% between 2005 and 2023. However, not all trends were positive. During the same period, France’s carbon sink, comprising mainly forests and land that absorb CO2, shrank by more than half.

While emissions from sectors covered by the EU’s Emissions Trading System (ETS) fell by an impressive 52.3%, emissions from sectors outside ETS (under effort-sharing rules) dropped by only 24.1%.

France now needs to reduce its emissions by around 5% every year from 2022 to 2030 to meet the EU’s new climate target of a 55% net emissions cut.  And more significantly it must also rebuild its carbon sink.

France has set an ambitious goal of cutting its GHG emissions by 50% compared to 1990 levels by 2030. In 2005, France’s emissions stood at about 566 million tonnes of CO2 equivalent (MtCO2e). By 2023, these emissions were 24.1% lower than in 2005.

  • In 2023, per capita emissions were 5.7 tonnes of CO2 equivalent — a 37% decrease from 2005.
  • The carbon intensity of France’s economy also improved, dropping by 43% between 2005 and 2023.

fraNCE EMISSIONS

How the Carbon Credit Charter Supports Real Net Zero Progress

The new Carbon-Credit Charter calls on companies to use carbon credits responsibly, focusing on transparency and real climate action. Seventeen international companies, including Schneider Electric, have already signed the pledge.

At its core, the Charter commits businesses to three main principles:

  • Prioritize Their Own Emission Reductions: Companies must first work on cutting their own emissions across all three scopes (Scope 1, 2, and 3) and publish a time-bound climate transition plan.
  • Use Carbon Credits Only as a Complement: Carbon credits should never replace efforts to reduce emissions. Instead, they can help address any remaining emissions on the way to achieving net-zero goals.
  • Clear and Separate Reporting: Companies must clearly report their gross emissions and disclose separately any use of carbon credits.

These principles closely follow the Voluntary Carbon Markets Integrity Initiative (VCMI)’s international best practice guidelines, including their Claims Code of Practice and the upcoming Scope 3 Action Code of Practice.

Building Momentum from COP29

The Charter’s launch comes at a time of rising international momentum. In November 2024, during the COP29 UN Climate Conference, a global consensus was reached on the long-awaited standards for carbon credits under Article 6.4 of the Paris Agreement.

These standards introduced clear rules for validating, verifying, and issuing high-quality carbon credits, setting a stronger foundation for international carbon markets.

Importantly, the new French Charter requires companies to align their carbon credit purchases with:

  • The Article 6.4 Mechanism Standards
  • The Integrity Council for the Voluntary Carbon Market’s (ICVCM) Core Carbon Principles

This dual focus ensures both supply-side (quality of carbon credits) and demand-side (how companies use credits) integrity.

Why This Matters Now

Commenting on the launch, Lydia Sheldrake, VCMI’s Director of Policy and Partnerships, praised France’s leadership. She said,

“The French government has shown international leadership by convening a group of high-ambition businesses to commit to using carbon credits with confidence and credibility.”

Sheldrake stressed that high-integrity carbon markets can drive immediate progress toward global climate goals. However, she also emphasized that real change will need strong mandates and clear market demand signals—areas where the French government is stepping up.

VCMI helps companies invest in voluntary carbon markets confidently and responsibly. According to Sheldrake, today’s announcement proves that VCMI’s guidance is now central to helping governments and businesses engage with carbon markets properly.

France Gives a Clear Signal to Global Carbon Markets

By introducing this Charter, France is sending a clear message: carbon credits are not a free pass. Companies must first reduce their actual emissions and only use carbon credits for the unavoidable emissions on their net-zero journey.

Furthermore, the signatories have pledged to ensure their credits come from reliable sources, either through the Article 6.4 mechanism or ICVCM-approved standards. This will help remove low-quality or questionable credits from the system, strengthening the credibility of the entire carbon market.

To summarize, the pledge offers:

  • A clear blueprint for businesses and governments worldwide on how to participate in carbon markets without undermining climate goals.
  • A hope that voluntary carbon markets will become an even more powerful force in the fight against climate change.

carbon market

Still, success depends on wide adoption. Other countries and more companies must follow this example, committing to credible carbon credit use and putting real effort into emission cuts. All this all, this latest annoucement from France shows that real, practical steps are being taken to strengthen climate action.

The post France Launches High-Integrity Carbon Credit Charter to Boost its Net Zero Progress appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com