Connect with us

Published

on

As global temperatures persist in rising to concerning new highs, national governments, multinational corporations, small businesses, and individuals are all urgently exploring ways to substantially reduce greenhouse gas emissions and mitigate climate change risks. One increasingly popular and impactful method that is gaining significant traction is the use of carbon credits to provide powerful financial incentives for businesses and consumers to cut emissions and support the rapid development of renewable energy sources.

This informative post is the 4th installment in our acclaimed new series based on our organization’s highly regarded 2023 Climate Change and Carbon Markets Annual Report.

The previous posts in this illuminating series so far have been:

In this post, we will take a closer look at various energy sources and strategies, emphasizing the importance of diverse solutions like fuel switching, renewables, nuclear energy, and carbon capture to combat climate change and achieve a sustainable energy future..

The Wedge Theory – A Portfolio Approach to Emissions Reductions

Climate experts propose a “wedge theory” framework to conceptualize the portfolio of solutions needed to reduce greenhouse gas (GHG) emissions and stabilize the climate. This approach requires deploying diverse technologies and strategies, each providing a “wedge” of avoided emissions adding up to the total reductions needed. The original theory called for 7 wedges, but emissions have continued rising, so 9 are now required. Wedges include renewables, nuclear energy, fuel switching, energy efficiency, forests and soils, and carbon capture and storage.

Understanding Fuel Switching

Fuel switching entails replacing carbon-intensive fuels like coal and oil with less carbon-intensive ones like natural gas. For example, switching from coal to gas can decrease power plant emissions by 60% per kilowatt-hour.

  • Coal: 25 metric tons carbon per terajoule
  • Oil: 20 metric tons carbon per terajoule
  • Natural Gas: 14 metric tons carbon per terajoule

So switching to gas provides a “bridge” to zero-carbon energy systems. The shale gas boom enabled by hydraulic fracturing accelerated this trend in the United States. However, the environmental impacts of techniques like fracking cannot be disregarded.

Nuclear Energy: A Renewable Source?

Nuclear energy, often hailed as a clean energy source, is derived from the process of splitting uranium atoms through fission. This fission process heats water to produce steam, which in turn spins turbines, ultimately generating electricity. The entire procedure emits no greenhouse gases, making it an attractive option in the fight against climate change. However, the question of whether nuclear energy can be classified as “renewable” remains a topic of contention among experts and environmentalists. While it offers a more sustainable alternative to fossil fuels, concerns about radioactive waste, the finite nature of uranium resources, and potential safety risks make its categorization as a renewable energy source debatable.

Harnessing Inexhaustible Sources: The Role of Renewables

Renewable energy derived from inexhaustible natural sources like sunlight, wind, and water offers immense potential with little to no GHG emissions. Growing renewables is crucial for climate change mitigation.

Solar Energy: Ever Improving Technologies

Solar energy, a cornerstone of renewable power sources, harnesses the abundant energy radiated by the sun. This is achieved primarily through two technologies: photovoltaics (PV) and concentrated solar plants. Photovoltaic cells, commonly known as solar panels, are designed to directly convert sunlight into electricity. They achieve this transformation using specially crafted semiconductor materials that capture photons and initiate an electric current. One of the standout features of solar PV systems is their adaptability. They can be installed on a grand scale for utility purposes, powering entire communities or even cities. Alternatively, they can be set up in smaller, distributed configurations, such as on rooftops of individual homes, allowing homeowners to generate their own electricity and even feed excess power back into the grid. As technology continues to advance, the efficiency and applications of solar energy are bound to expand, making it an even more integral part of our energy landscape.

Geothermal Energy: Tapping into Earth’s Heat

Geothermal energy is a remarkable form of power that taps into the Earth’s innate thermal energy stored beneath its crust. This energy originates from the radioactive decay of materials deep within the planet and the original heat from Earth’s formation. In regions with pronounced subsurface temperatures, often marked by volcanic or tectonic activity, the potential for generating geothermal electricity is especially high. The typical process involves accessing hot water reservoirs located below the surface. This water, when pumped up through specialized wells, transforms into steam due to the pressure difference. This steam then propels turbine generators, converting the Earth’s heat into usable electricity. As a sustainable and environmentally friendly energy source, geothermal power offers a consistent and reliable alternative to more conventional power generation methods.

Hydro and Wind: Leveraging Flowing Resources

Hydropower converts the kinetic energy of flowing water into electricity using turbine generators. Dams with reservoirs
offer reliable large-scale hydro electricity, while run-of-river systems have lower impact.

Wind power harnesses the kinetic energy of wind, again turning turbines to produce power. Onshore and offshore wind farms are rapidly expanding as costs plummet.

But hydropower and wind face challenges in location constraints, transmission needs, and intermittency. Still, they are vital and growing pieces of the renewables puzzle.

Bioenergy: Leveraging Natural Carbon Sinks

Bioenergy stands out as a unique form of renewable energy because it taps into the chemical energy naturally stored within organic materials. This energy is derived from both living organisms, like plants and animals, and those that have recently died. A diverse range of sources, including forest biomass, residues from agricultural activities and livestock, as well as various waste streams, can be converted into renewable electricity, fuels for transportation, and heat for homes and industries.

However, it’s essential to approach bioenergy with a discerning eye. While it holds great potential, not every form of bioenergy is environmentally beneficial. For instance, clearing vast expanses of forests to cultivate energy crops can lead to significant carbon emissions and disrupt delicate ecosystems. This not only negates the carbon benefits but also poses threats to biodiversity. Looking at the positive aspects, bioenergy can be obtained from waste biomass or cultivated on lands that are not suitable for other agricultural purposes. This not only provides a sustainable solution, but also has a positive impact on the climate. Such practices ensure that greenhouse gas emissions are minimized, making bioenergy a viable and eco-conscious energy alternative.

Waste-to-Energy: Capturing Landfill Gas

Landfill gas (LFG) projects prevent methane emissions from landfills by capturing methane for flaring or energy use. Methane is a potent greenhouse gas, so converting it to CO2 via combustion provides immediate climate benefits. LFG projects also reduce local air pollution.
Captured LFG can be used onsite for electricity, heat, or even vehicle fuel. These projects provide environmental and socio-economic benefits to communities near landfills.

Sequestering Carbon: Storing Away Emissions

Carbon capture, utilization, and storage (CCUS) aims to balance continued fossil fuel use with equivalent carbon storage elsewhere. CCUS removes CO2 from large point sources like power plants or directly extracts CO2 from ambient air. The carbon is then stored via injection into geologic formations, old oil and gas reservoirs, or chemical conversion into stable solids.
While technologically feasible, CCUS still faces challenges with scaling up infrastructure, ensuring permanent storage, and lowering costs. More investment is needed to develop CCUS into a viable wedge.

The All-Out Effort Needed

Bending the global emissions curve downwards requires urgent economy-wide action across all sectors. Intelligently leveraging fuel switching, nuclear energy, renewables, bioenergy, and eventually carbon storage provides paths to a carbon-neutral future. But the clock is ticking. Successfully activating these climate wedges demands policies, partnerships, and funding on a massive scale. Our future depends on rising to this great challenge.

To learn more about the role fuel switching plays in fighting climate change contact us for the full report.

——

Photo by Jason Blackeye on Unsplash

Carbon Footprint

DOE’s Nuclear Fuel and Fusion Partnership Signals a New Era for U.S. Power Markets

Published

on

The United States is moving fast to rebuild its nuclear fuel supply chain, revive dormant facilities, and accelerate next-generation nuclear technologies. These efforts come as electricity demand surges from artificial intelligence (AI), data centers, and industrial electrification.

Recent announcements from the U.S. Department of Energy (DOE) show a coordinated push to strengthen uranium enrichment, revive legacy nuclear infrastructure, and deepen international collaboration on fusion power. Together, these developments highlight how nuclear energy is becoming central to U.S. energy security, economic competitiveness, and climate goals.

Hanford’s FMEF Gets a Second Life in the Nuclear Fuel Cycle

The DOE Office of Environmental Management announced a new partnership with American nuclear fuel company General Matter to explore the reuse of the Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington State.

FMEF is a 190,000-square-foot facility originally built to support the Liquid Fast Breeder Reactor Program. However, it never operated in a nuclear role and has been idle since 1993 under surveillance and maintenance status.

Under the new lease, General Matter will evaluate the facility for potential upgrades, conduct site characterization, and engage local communities and stakeholders. The goal is to determine whether the facility can be returned to service for advanced nuclear fuel cycle technologies and materials research.

Reviving FMEF could help the U.S. rebuild critical infrastructure that was lost after decades of underinvestment in nuclear fuel production. It also fits into the Trump administration’s broader agenda to expand domestic energy production and reduce reliance on foreign nuclear fuel services.

General Matter CEO Scott Nolan said:

“Rebuilding America’s nuclear fuel capabilities is critical to strengthening our nuclear industrial base, reducing our reliance on foreign providers and lowering energy costs for utilities and consumers. We thank our partners in Hanford and the Department of Energy for supporting us in the development of a stronger, more secure nuclear fuel supply chain built here in the United States.”

General Matter’s Role in Rebuilding U.S. Uranium Enrichment

The Hanford project complements General Matter’s plans to develop a uranium enrichment facility at the former Paducah Gaseous Diffusion Plant in Kentucky. Construction is expected to begin in 2026, with enrichment operations targeted before the end of the decade.

This privately funded facility aims to supply fuel for commercial nuclear reactors, national security reactors, and research institutions. It is part of a broader effort to restore U.S. uranium enrichment capacity, which has declined sharply over the past few decades.

As part of the lease agreement, General Matter will receive at least 7,600 cylinders of uranium hexafluoride (UF6). Reprocessing this material could save U.S. taxpayers about $800 million in avoided disposal costs while providing a reliable domestic feedstock for reenrichment.

General Matter was also selected in October 2024 as one of four companies to provide enrichment services for establishing a U.S. supply of high-assay low-enriched uranium (HALEU). HALEU is a key fuel for advanced reactors and small modular reactors (SMRs), which are expected to play a major role in future power systems.

uranium usa
Source: EIA

U.S.–Japan Fusion Partnership Marks a New Era of Cooperation

In another major development, the DOE and Kyoto Fusioneering (KF) announced a landmark partnership to advance fusion power technology and reduce commercialization risks.

The collaboration centers on breeding blanket systems, which produce tritium fuel needed for fusion reactors. A key project is UNITY-3, a next-generation fusion testing facility planned at Oak Ridge National Laboratory (ORNL). This facility will validate breeding blanket performance using realistic neutron environments and component designs.

The partnership also includes Idaho National Laboratory and Savannah River National Laboratory. Together, they will leverage KF’s UNITY-1 and UNITY-2 facilities in Japan and Canada to test thermal systems, tritium fuel cycles, and non-nuclear components.

This coordinated approach aims to systematically increase technology readiness levels and accelerate the path toward commercial fusion power. The initiative has already gained strong industry support, with multiple U.S. fusion companies endorsing the program.

DOE officials described fusion as a transformational opportunity for the energy sector and a critical pillar for long-term competitiveness. The partnership also strengthens U.S.–Japan strategic ties in clean energy and advanced technology.

AI, Data Centers, and Electrification Drive Nuclear Demand

Rising electricity demand is a key driver behind the renewed interest in nuclear power. AI workloads, cloud computing, electric vehicles, and industrial electrification are pushing power consumption to record levels.

According to the U.S. Energy Information Administration (EIA), total U.S. electricity consumption is expected to increase from 4,198 billion kilowatt-hours (kWh) in 2025 to about 4,256 billion kWh in 2026. This steady growth reflects expanding data centers, manufacturing, and population-driven demand.

Nuclear power remains a critical source of reliable baseload electricity. EIA forecasts that nuclear generation will remain stable through 2026, accounting for roughly 18% to 19% of total U.S. electricity generation. While renewables such as solar and wind are growing rapidly, nuclear continues to provide round-the-clock power that complements intermittent clean energy sources.

This reliability is especially important for AI data centers, which require constant power and cannot rely solely on variable renewable generation.

EIA US nuclear generation
Source: EIA

Uranium Production and Fuel Cycle Challenges

Despite strong policy support, the U.S. nuclear fuel sector faces significant challenges. Domestic uranium production has been volatile, highlighting the difficulty of rebuilding a mining industry after decades of decline.

EIA highlighted that, in the third quarter of 2025, U.S. uranium concentrate production totaled 329,623 pounds of U3O8, a 44% decline from the previous quarter. This drop underscores the need for sustained investment and policy support to stabilize domestic supply.

Beyond mining, the U.S. must also expand conversion, enrichment, and fuel fabrication capacity. Much of the global enrichment market is dominated by foreign suppliers, including Russia, Europe, and China. Rebuilding domestic capabilities will require large capital investments and regulatory approvals.

uranium enrichment
Source: EIA

Trump Targets Massive Nuclear Expansion

U.S. policy is increasingly aligned with nuclear expansion. The United States currently operates 96 nuclear reactors with a total gross capacity of about 102 gigawatts, according to the World Nuclear Association.

In May 2025, President Donald Trump signed executive orders targeting 400 gigawatts of nuclear capacity by 2050. The policy includes uprates at existing reactors, construction of new large reactors by 2030, and major investments in fuel cycle infrastructure.

The strategy also emphasizes domestic supply chains for uranium mining, enrichment, fuel fabrication, and waste management. Building these supply chains is seen as critical for energy security, especially as geopolitical tensions affect global uranium and enrichment markets.

Analysts expect SMRs and advanced reactors to play a growing role, particularly for industrial facilities, hydrogen production, and large data centers seeking long-term power contracts.

Fusion and Advanced Reactors: Long-Term Game Changers

While traditional nuclear reactors are expanding, fusion and advanced fission technologies represent the long-term future of the sector.

Fusion promises abundant, low-waste energy, but it remains technologically complex and expensive. The DOE-Kyoto Fusioneering partnership aims to close key technology gaps and accelerate commercialization timelines.

Advanced fission reactors, including fast reactors and SMRs, are closer to deployment. These designs offer improved safety, lower costs, and flexibility for industrial applications. They also require new fuel types such as HALEU, reinforcing the importance of domestic enrichment capacity.

Why This Matters for US Nuclear Infrastructure

The U.S. push to revive nuclear infrastructure, expand enrichment, and accelerate fusion reflects a strategic shift in energy policy. Nuclear power is becoming a cornerstone of the digital economy and clean energy transition.

For investors, these developments could reshape uranium markets, nuclear technology companies, and infrastructure spending. Rising electricity demand from AI and electrification could support long-term growth in nuclear capacity, even as renewables continue to scale.

With AI, data centers, and electrification driving record electricity demand, nuclear power is emerging as a strategic asset for reliable, low-carbon energy. Policy support is strong, but rebuilding the full nuclear fuel cycle will require sustained investment, regulatory reform, and public acceptance.

In conclusion, the DOE’s recent partnerships with General Matter and Kyoto Fusioneering highlight a coordinated effort to rebuild the U.S. nuclear ecosystem—from mining and enrichment to advanced reactors and fusion research.

The post DOE’s Nuclear Fuel and Fusion Partnership Signals a New Era for U.S. Power Markets appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Elon Musk’s SpaceX Eyes Solar Data Centers in Space to Power the AI Boom

Published

on

Elon Musk's SpaceX Eyes Solar Data Centers in Space to Power the AI Boomv

SpaceX has asked US regulators to approve a new satellite system that would act like a large, space-based computing network. Several outlets report that SpaceX filed a request with the US Federal Communications Commission (FCC) for an “orbital data center” constellation. This could include up to one million satellites in low Earth orbit, powered mainly by solar energy and connected using laser links.

The idea is simple. Instead of building more data centers on land, SpaceX would place computing hardware in orbit and run it on sunlight. The system would then handle heavy computing tasks, including AI workloads, without drawing electricity from local grids on Earth.

AI Is Pushing Power Systems to the Edge

The scale is what makes the proposal unusual. Today, there are roughly 15,000 satellites in orbit, and reports say more than 9,600 are active Starlink satellites. A one-million-satellite “data center” network would be far larger than anything proposed so far.

However, the “one million” figure appears in reporting tied to the FCC filing, but regulators have not yet approved the plan. Several analysts and engineers quoted in coverage also treat the number as a maximum request, not a final build plan.

The FCC filing stated:

“By directly harnessing near constant solar power with little operating or maintenance costs, these satellites will achieve transformative cost and energy efficiency while significantly reducing the environmental impact associated with terrestrial data centers.”

SpaceX’s proposal arrives during a period of fast growth in computing demand. The International Energy Agency (IEA) estimates that data centers consumed about 415 terawatt-hours (TWh) of electricity in 2024. This is roughly 1.5% of global electricity use. Demand has grown by around 12% each year for the last five years.

Older IEA work also highlighted how quickly demand can rise. One IEA scenario noted that data centers consumed 460 TWh in 2022. In a worst-case situation, this could exceed 1,000 TWh by 2026. The increase depends on trends in AI, crypto, and efficiency.

Datacenter growth will drive power demand from 2024 to 2030

This demand growth has significant effects on power systems. Utilities, cities, and local communities often push back when new large data centers arrive. The concerns include higher power demand, water use for cooling, and land use. Thus, SpaceX and Elon Musk have framed space-based computing as a way to reduce pressure on Earth’s power grids.

That is where renewables enter the story. Globally, clean energy investment is already rising fast. The IEA said total global energy investment exceeded US$ 3 trillion in 2024, with around US$ 2 trillion going to clean energy technologies and infrastructure. BloombergNEF reported that clean energy investment reached $2.3 trillion in 2025.

Why Space Looks Tempting for Energy-Hungry AI

Space has one obvious advantage: sunlight is steady above the clouds. Solar panels in orbit can receive strong sunlight for long periods, depending on their orbit and design.

SpaceX’s pitch, as described in reporting, leans on that idea: a solar-powered platform in orbit could run without fuel deliveries and without drawing power from Earth’s grid.

Orbital data center infographic. Environmental impact of orbital and terrestrial data centers

Orbital compute could also reduce “latency” for some tasks in theory. If a user needs fast responses across large regions, satellites can route data without depending on ground networks in certain cases. SpaceX already uses laser links across Starlink satellites for routing. That experience may be part of the logic for a computing-focused network.

Space also avoids some land-based constraints. On Earth, data centers need large sites, grid connections, and cooling systems. SpaceX and supporters argue that orbit may reduce some land and water issues, at least in principle.

Recent market analysis shows the orbital data center market is set for quick growth. This is due to the rising demand for AI computing and energy limits on Earth. Analysts expect the orbital data center market to rise from around US$ 1.77 billion in 2029 to nearly US$ 39.1 billion by 2035, a compound annual growth rate of about 67.4%.

orbital data center market growth 2035

The surge comes from several factors. These include prototype satellite launches, solar-powered compute ideas, and interest from companies like Google, Nvidia, and SpaceX.

However, the advantages offered by space do not remove the biggest engineering problems.

The Hard Parts: Physics, Maintenance, and the Messy Reality of Orbit

A major challenge for computers in space is waste heat. Computer chips turn much of their electricity into heat. On Earth, air and water systems carry heat away. In space, there is no air. Objects mainly lose heat through radiation, which can require large radiator surfaces.

That is why experts have raised doubts and concerns, including:

  • Heat management: Space is a vacuum, not a cooling system. Hardware can trap heat, so large radiator systems are needed to release waste heat at scale.
  • Maintenance limits: Data center hardware fails often. In orbit, repairs are difficult and costly, and sending crews is not yet practical today.
  • Orbital congestion: A very large satellite network would raise collision risks and space debris concerns, including the risk of cascading failures known as Kessler syndrome.
  • Cost and launches: Building and deploying systems at this scale would require massive launch capacity and very high upfront costs, even with low-cost rockets.

These constraints do not mean orbital data centers are impossible. But they explain why most experts treat this as an early-stage concept rather than a near-term build plan.

A Signal of Stress in the AI–Energy Equation

Even if SpaceX never launches a million satellites, the proposal highlights a key issue. The AI boom is driving up electricity demand. Energy planners are now looking for new ways to supply and use energy more efficiently.

The IEA’s data shows the scale of the challenge. With data centers already at about 415 TWh in 2024, even modest growth adds large new loads to power systems.

On the supply side, the global investment trend favors clean energy. The IEA expects clean energy technologies and infrastructure to take over US$ 2 trillion of global investment in 2025, larger than total spending on oil, gas, and coal.

global clean energy investment 2025 by IEA

This sets up two parallel paths:

  • First, most near-term data center growth will stay on Earth. That means grids, renewables procurement, storage, and efficiency standards will do the bulk of the work.
  • Second, a smaller group of companies may test space-based power or computing systems.

Beyond SpaceX, several other firms are exploring solar-powered orbital computing. Starcloud has already launched a satellite with an NVIDIA GPU to test high-performance computing in orbit, backed by seed funding and solar panel grids to power large data loads.

Axiom Space plans to send orbital data center modules to the ISS by 2027, while Google’s Project Suncatcher aims to power AI workloads via solar satellites. China’s ADA Space is developing a constellation of thousands of AI-enabled satellites.

SpaceX’s filing has also drawn attention to other efforts and interest in space-based energy and computing concepts, even if the timelines remain uncertain.

For now, its proposal highlights how quickly the search for new computing and energy models is expanding beyond Earth. Orbital data centers remain early in development, but they reflect growing interest in pairing constant solar power with high-density computing at scale.

As launch costs drop and space technology improves, orbital systems may become a good alternative to ground-based data centers. This is especially true for energy-heavy tasks. The idea signals a longer-term shift in how and where digital infrastructure may be built.

The post Elon Musk’s SpaceX Eyes Solar Data Centers in Space to Power the AI Boom appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

India Puts $2.2 Billion for Carbon Capture in 2026-2027 Budget

Published

on

India Puts $2.2 Billion for Carbon Capture in 2026 Budget

India is preparing a major public funding push for carbon capture, utilization, and storage, also known as CCUS. In the Union Budget for 2026–27, the government set out a plan to support CCUS with a proposed outlay of ₹20,000 crore over the next five years. That is ₹200 billion, which is about US$2.2 billion.

The budget document places the measure under efforts to improve long-term energy security and stability. It also describes CCUS as a scheme with that ₹20,000 crore outlay.

The amount matters because CCUS is expensive and hard to scale. A clear budget line signals that India wants to move beyond small pilots and research projects. It also shows the government is looking for options to reduce emissions in industries that are difficult to clean up quickly.

The plan comes as India faces a practical challenge. The country is building large amounts of renewable energy, but parts of the economy still rely on high-emitting industrial processes.

Cement, steel, refineries, chemicals, and thermal power remain central to growth. These sectors often cannot cut emissions to near zero with renewables alone, at least not in the short term. This is where the government sees a role for carbon capture.

From Policy Papers to Pipes and Storage

The budget measure points to CCUS as a way to raise “technology readiness” and expand end-use applications. In plain terms, that means the government wants more projects that move from study to real equipment in real plants. It also suggests the plan will target large emitting sectors where capture and storage could, in theory, reduce emissions without shutting down existing production too quickly.

India’s Ministry of Petroleum and Natural Gas has already described CCUS as an area where it is working to build a practical strategy and encourage collaboration across the oil and gas sector. That includes planning for how to implement capture, transport, use, and storage options in India’s energy system.

This new budget funding could connect to that effort in two ways.

  • First, it can reduce early financial risk for companies. Carbon capture equipment adds cost. It also adds operating needs, such as energy use, maintenance, and monitoring. Without support, many firms delay investment because they do not see a near-term return.
  • Second, it can help build shared infrastructure. CCUS is not just one machine, and it often needs pipelines, compressors, monitoring systems, and long-term storage sites. Shared infrastructure can lower costs when several plants connect to the same transport and storage network.

The budget document does not yet list every rule, incentive rate, or eligibility condition in the public summary. But the stated five-year outlay sets a clear ceiling for public support and signals that the government expects a pipeline of projects, not a single pilot.

Why India is Looking at Carbon Capture Now

India has set a long-term goal of net-zero emissions by 2070. That pledge has shaped policy planning across power, industry, fuels, and carbon markets.

In a 2022 press release on a national CCUS policy study, the government highlighted India’s climate direction, including steps toward net zero by 2070 and the need to cut emissions in hard-to-abate sectors.

Mission 2070 for India net zero goal
Source: WEF

In late 2025, India also released a national R&D roadmap for CCUS through the Department of Science and Technology. The roadmap aims to guide coordinated action and speed up technology deployment, with a focus on hard-to-abate sectors such as cement, steel, and power.

These moves show a pattern. India is building the “soft” parts of a CCUS system first—research priorities, policy frameworks, and coordination. The budget outlay is a step toward the “hard” parts—real projects and infrastructure.

There is also an external trade pressure. Many Indian exporters expect stricter carbon rules in major markets. Policies such as the European Union’s carbon border measures have pushed firms to look for ways to reduce the emissions tied to their products.

CCUS is one option that can reduce emissions at the facility level, especially in cement, steel, and refining, where process emissions are hard to remove.

At the same time, India still needs to expand its energy supply for growth. That includes reliable power for industry and cities. A CCUS program can fit into this reality because it aims to cut emissions without requiring an immediate shutdown of existing assets.

A Tool for Tough Emissions, Not a Silver Bullet

CCUS works in three main steps. First, a plant captures carbon dioxide from flue gases or industrial streams. Second, it compresses and transports the CO₂. Third, it stores the CO₂ underground or uses it in products such as fuels, chemicals, building materials, or enhanced oil recovery.

In practice, storage is the main constraint. Projects need suitable geology, injection tests, monitoring systems, and long-term rules on liability. Without proven storage, capture alone does not deliver lasting emissions cuts. Below is India’s carbon storage capacity shown in a geological map:

India CCUS geological structure
Source: India’s Ministry of Petroleum and Natural Gas

Globally, CCUS remains far below the scale required in net-zero scenarios. The International Energy Agency (IEA) estimates that global carbon capture capacity reached just over 50 million tonnes of CO₂ per year as of early 2025. This is up modestly from earlier years but still far below the levels needed in most net-zero climate pathways.

In its Net Zero pathway, capture rises to 1,024 Mt by 2030 and 6,040 Mt by 2050. As of early 2025, only just over 50 Mt per year of capture capacity is operating worldwide.

carbon capture capacity by 2030 IEA
Source: IEA

The IEA reports that even if all planned projects move forward, global capture capacity will only hit about 430 Mt per year by 2030. The planned storage capacity is around 670 Mt. This gap explains why the IEA stresses faster storage development and shorter project lead times.

India has been laying the groundwork for this challenge. A draft 2030 CCUS roadmap linked to the oil and gas sector compiles early estimates of national storage potential.

It identifies deep saline aquifers as the largest category, with about 291 gigatonnes (Gt) of estimated capacity. It mentions potential storage of 97–316 Gt in basalt formations, 3.5–6.3 Gt in coal reservoirs, and around 1.2 Gt in oil fields for CO₂-enhanced oil recovery. These figures reflect theoretical or early-stage estimates and still require site-level validation.

india carbon capture potential
Estimated CO₂ storage capacity across India’s sedimentary basins (Gt). Source: India’s Ministry of Petroleum and Natural Gas data

CCUS is most relevant in hard-to-abate sectors where emissions come from chemistry, not just fuel use. Cement is a clear example. Even with clean power, roughly half of cement emissions come from the calcination process itself. Steel also poses challenges, as the sector emits high carbon.

Costs remain a key barrier. The IEA estimates capture costs of $15–25 per tonne of CO₂ for high-purity industrial streams. In contrast, more diluted streams, like cement or power generation, cost $40–120 per tonne. Transport, injection, and long-term monitoring add further costs and complexity.

These limits explain why CCUS is not a replacement for renewables, efficiency, or electrification. India’s policy shows that the government views CCUS as a helpful tool. It can cut emissions in tough sectors, but only if storage, regulation, and project delivery happen quickly.

Where the Money Goes Will Matter Most

The headline figure—₹20,000 crore over five years—sets the scale. What matters next is how the money is used.

Project selection will shape outcomes. A focus on a few large hubs could support shared CO₂ transport and storage. A scattered approach may fund pilots but limit infrastructure build-out.

Sector priorities also matter. Budget signals point to power, steel, cement, refineries, and chemicals—all high-emitting industries with large and, in some cases, concentrated CO₂ streams.

Rules will be just as important as funding. India is developing an Indian Carbon Market under the Carbon Credit Trading Scheme. Companies will need clarity on whether captured and stored CO₂ can earn credits and under what standards.

Storage readiness remains a final test. Proven sites, test drilling, and long-term monitoring will be essential to move from plans to scale. If these pieces align, public funding could accelerate real deployment. If not, it may support pilots without delivering deep emissions cuts.

For now, the budget line makes one point clear. India is putting real public funding behind carbon capture, and it is doing so with an amount large enough to change corporate planning in several heavy industries.

The post India Puts $2.2 Billion for Carbon Capture in 2026-2027 Budget appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com