More than 70% of European cities are not adapting to climate change in a consistent and coherent way.
That is the headline finding of our new study, published in Nature Climate Change, on how European cities are – or are not – preparing for a warming world.
We find that nearly half of the 327 cities that we assess have not published an adaptation plan, leaving us unsure as to whether or how they are trying to reduce climate threats.
For the 167 cities that do have adaptation plans – ranging from Alborg and Aarhus in Denmark through to Zilona Gorá in Poland and Zaragoza in Spain – we find that the climate-related measures within them are often inconsistent.
In other words, their climate risk assessments, policy goals, adaptation measures and monitoring programmes are not aligned.
For example, 81 plans identified the increased risk of storms and winds from climate change, but only 23 of these plans (28%) mentioned increasing resilience to such severe weather events as a specific policy goal.
These inconsistencies contribute to a “gap” that the UN has identified between the adaptation goals that societies have adopted and the measures they have implemented to try and meet them.
Our study finds that Nuremberg in Germany has the largest gap in its adaptation plan, with Stuttgart and Schwerin in Germany and Birmingham in the UK close behind.
The gap is particularly alarming because Europe is warming twice as fast as any other continent – and it is a continent that has had considerable financial and institutional support for adaptation for decades.
Consistent and coherent
Much of the existing research into the “adaptation gap” focuses on the difference between the climate measures a city needs and what action has actually been taken.
But there is another key part of the adaptation gap – whether the policies and measures are actually internally consistent.
Ideally, we would expect adaptation efforts to be “joined-up” along the policy chain.
For example, where climate risk assessments suggest that a city faces specific threats from storms, flash flooding, heatwaves, forest fires or drought, these vulnerabilities should be linked directly to the municipality’s adaptation goals, policies and the monitoring and evaluation processes.
Additionally, we might hope that city governments would involve those at risk from severe climate impacts, such as vulnerable population groups, industries and sectors of the economy, in decisions as to how they will be protected.
If these different phases of adaptation management are misaligned and inconsistent, we can see how cities and societies are less likely to deal with the impact of severe weather events effectively.
‘Consistency checks’
We developed a series of “consistency checks” to identify the extent to which different stages of the adaptation management process are aligned.
These include:
- Consistency between hazards identified in a risk assessment and a city’s adaptation goals.
- Consistency between the risks to specific sectors and detailed policy measures.
- Consistency between the risks faced by vulnerable groups and detailed policy measures.
- Consistency between the policy measures targeted at vulnerable groups and monitoring and evaluation processes to ensure they are being implemented.
- Consistency between the risks faced by vulnerable groups and their involvement in decision-making.
We use these checks to assess the adaptation strategies of European cities. For this, we use an existing dataset of the local adaptation plans of more than 300 cities.
(The dataset covers the 27 member countries of the EU, plus the UK. It aims to cover around 20% of the population of each country and include national and regional capitals where possible. In general, it covers large cities with more than 250,000 people and medium-size urban areas with more than 50,000 people.)
We find that nearly half (49%) of the plans do align climate risks with climate goals. Slightly more than half (52%) align identified sectoral risks with respective measures, but only regarding specific economic sectors and industries.
For example, 68 cities (77%) identify particular risks for buildings, while 70 cities (80%) highlight risks to the water industry and include details of measures to protect these sectors.
However, identified risks for vulnerable groups, such as risks for older people, those on low-incomes and ethnic minorities, were only followed-up with consistent measures in 43% of the plans.
Also, only 4% of cities consider or involve vulnerable groups in monitoring and evaluation (if they identified these groups at risk) – and only 1% of cities were effectively engaging vulnerable communities in plan development.
Given that the least powerful members of society are often the most vulnerable to climate change, there is a real risk that they will be further exposed to severe weather events.
Overall, when assessing each of the five consistency checks in all 167 plans, we find inconsistencies in more than two-thirds (70%). This is despite the fact that adaptation planning in Europe has improved over time – as we highlighted in a previous Carbon Brief article.
The findings are illustrated in the map below, which shows the 167 cities with adaptation plans. The coloured dots indicate the extent to which each city’s plan is inconsistent (indicating a potential adaptation gap) – taken as an average across the five checks set out in our study.
Green dots indicate plans that are fully consistent, with a sliding scale of inconsistency through yellow, orange and red. The maximum inconsistency identified in the study is an adaptation gap of 79.6% – found in Nuremberg, Germany. But Stuttgart and Schwerin in Germany and Birmingham in the UK are close behind, with an average “gap” score of more than 78%.

Lack of adaptation plans
Significantly, our research finds that only 167 of the 327 cities – just over half of those in the database – had even produced a climate adaptation plan by the study’s cut-off date of December 2020.
As such, we were unable to assess how a huge number of places across Europe are planning to deal with climate threats – regardless of whether their activities are misaligned or not.
(Although many cities will have published adaptation plans since this date, it is not clear how coherent their activities are likely to be, nor whether they take sufficient account of the needs of vulnerable groups.)
Overall, our research suggests a greater need for city and national governments to base their adaptation policies on robust risk assessments and to monitor progress accordingly – particularly with the most vulnerable social groups in society in mind.
Our findings highlight the importance of focusing on those who are most vulnerable to climate change, by involving them in decision-making and targeting specific measures at these groups.
The post Guest post: More than 70% of adaptation plans for European cities are ‘inconsistent’ appeared first on Carbon Brief.
Guest post: More than 70% of adaptation plans for European cities are ‘inconsistent’
Climate Change
Guest post: Why 2024’s global temperatures were unprecedented, but not surprising
Human-caused greenhouse gas (GHG) emissions in 2024 continued to drive global warming to record levels.
This is the stark picture that emerges in the third edition of the “Indicators of Global Climate Change” (IGCC) report, published in Earth System Science Data.
IGCC tracks changes in the climate system between Intergovernmental Panel on Climate Change (IPCC) science reports.
In doing so, the IGCC fills the gap between the IPCC’s sixth assessment (AR6) in 2021 and the seventh assessment, expected in 2028.
Following IPCC methods, this year’s assessment brings together a team of over 60 international scientists, including former IPCC authors and curators of vital global datasets.
As in previous years, it is accompanied by a user-friendly data dashboard focusing on the main policy-relevant climate indicators, including GHG emissions, human-caused warming, the rate of temperature change and the remaining global carbon budget.
Below, we explain this year’s findings, highlighting the role that humans are playing in some of the fundamental changes the global climate has seen in recent years.

(For previous IGCC reports, see Carbon Brief’s detailed coverage in 2023 and 2024.)
An ‘unexceptional’ record high
Last year likely saw global average surface temperatures hit at least 1.5C above pre-industrial levels. This aligns with other major assessments of the Earth’s climate.
Our best estimate is a rise of 1.52C (with a range of 1.39-1.65C), of which human activity contributed around 1.36C. The rest is the result of natural variability in the climate system, which also plays a role in shaping global temperatures from one year to the next.
Our estimate of 1.52C differs slightly from the 1.55C given by the World Meteorological Organisation (WMO) state of the global climate 2024 report, published earlier this year. This is because they make slightly different selections on which of the available global land and ocean temperature datasets to include. (The warming estimate has varied by similar amounts in past years and future work will aim to harmonise the approaches.)
The height of 2024’s temperatures, while unprecedented in at least the last 2,000 years, is not surprising. Given the high level of human-induced warming, we might currently expect to see annual temperatures above 1.5C on average one year in six.
However, with 2024 following an El Niño year, waters in the North Atlantic were warmer than average. These conditions raise this likelihood to an expectation that 1.5C is surpassed every other year.
From now on, we should regard 2024’s observed temperatures as unexceptional. Temperature records will continue to be broken as human-caused temperature rise also increases.
Longer-term temperature change
Despite observed global temperatures likely rising by more than 1.5C in 2024, this does not equate to a breach of the Paris Agreement’s temperature goal, which refers to long-term temperature change caused by human activity.
IGCC also looks at how temperatures are changing over the most recent decade, in line with IPCC assessments.
Over 2015-24, global average temperatures were 1.24C higher than pre-industrial levels. Of this, 1.22C was caused by human activity. So, essentially, all the global warming seen over the past decade was caused by humans.
Observed global average temperatures over 2015-24 were also 0.31C warmer than the previous decade (2005-14). This is unsurprising given the high rates of human-caused warming over the same period, reaching a best estimate of 0.27C per decade.
This rate of warming is large and unprecedented. Over land, where people live, temperatures are rising even faster than the global average, leading to record extreme temperatures.
But every fraction of a degree matters, increasing climate impacts and loss and damage that is already affecting billions of people.
Driven by emissions
Undoubtedly, these changes are being caused by GHG emissions remaining at an all-time high.
Over the last decade, human activities have released, on average, the equivalent of around 53bn tonnes of CO2 into the atmosphere each year. (The figure of 53bn tonnes expresses the total warming effect of CO2 and other greenhouse gases, such as methane and nitrous oxide, using CO2 as a reference point.)
Emissions have shown no sign of the peak by 2025 and rapid decline to net-zero required to limit global warming to 1.5C with no or limited “overshoot”.
Most of these emissions were from fossil fuels and industry. There are signs that energy use and emissions are rising due to air conditioning use during summer heatwaves. Last year also saw high levels of emissions from tropical deforestation due to forest fires, partly related to dry conditions caused by El Niño.
Notably, emissions from international aviation – the sector with the steepest drop in emissions during the Covid-19 pandemic – returned to pre-pandemic levels.
The amount of CO2 in the atmosphere, alongside the other major GHGs of methane (CH4) and nitrous oxide (N2O), is continuing to build up to record levels. Their concentrations have increased by 3.1, 3.4 and 1.7%, respectively, since the 2019 values reported in the last IPCC assessment.
At the same time, aerosol emissions, which have a cooling effect, are continuing to fall as a result of important efforts to tackle air pollution. This is currently adding to the rate of GHG warming.
Notably, cutting CH4 emissions, which are also short-lived in the atmosphere, could offset this rise. But, again, there is no real sign of a fall – despite major initiatives such as the Global Methane Pledge.
The effect of all human drivers of climate change on the Earth’s energy balance is measured as “radiative forcing”. Our estimate of this radiative forcing in 2024 is 2.97 Watts per square metre (W/m2), 9% above the value recorded in 2019 that was quoted in the last IPCC assessment.
This is shown in the figure below, which illustrates the percentage change in an array of climate indicators since the data update given in the last IPCC climate science report.

Continued emissions and rising temperatures are meanwhile rapidly eating into the remaining carbon budget, the total amount of CO2 that can be emitted if global warming is to be kept below 1.5C.
Our central estimate of the remaining carbon budget from the start of 2025 is 130bn tonnes of CO2.
This has fallen by almost three-quarters since the start of 2020. It would be exhausted in a little more than three years of global emissions, at current levels.
However, given the uncertainties involved in calculating the remaining carbon budget, the actual value could lie between 30 and 320bn tonnes, meaning that it could also be exhausted sooner – or later than expected.
Beyond global temperatures
Our assessment also shows how surplus heat is accumulating in the Earth’s system at an accelerating rate, becoming increasingly out of balance and driving changes around the world.
The data and their changes are displayed on a dedicated Climate Change Tracker platform, shown below.

The radiative forcing of 2.97 W/m2 adds heat to the climate system. As the world warms in response, much of this excess heat radiates to space, until a new balance is restored. The residual level of heating is termed the Earth’s “energy imbalance” and is an indication of how far out of balance the climate system is and the warming still to come.
This residual rate of heat entering the Earth system has now approximately doubled from levels seen in the 1970s and 1980s, to around 1W/m2 on average during the period 2012-24.
Although the ocean is storing an estimated 91% of this excess heat, mitigating some of the warming we would otherwise see at the Earth’s surface, it brings other impacts, including sea level rise and marine heatwaves.
Global average sea level rise, from both the melting of ice sheets and thermal expansion due to deep ocean warming, is included in the IGCC assessment for the first time.
We find that it has increased by around 26mm over the last six years (2019-24), more than double the long-term rate. This is the indicator that shows the clearest evidence of an acceleration.
Sea level rise is making storm surges more damaging and causing more coastal erosion, having the greatest impact on low-lying coastal areas. The 2019 IPCC special report on the oceans and cryosphere estimated that more than one billion people would be living in such low-lying coastal zones by 2050.
Multiple indicators
Overall, our indicators provide multiple lines of evidence all pointing in the same direction to provide a clear and consistent – but unsurprising and worsening – picture of the climate system.
It is also now inevitable that global temperatures will reach 1.5C of long-term warming in the next few years unless society takes drastic, transformative action – both in cutting GHG emissions and stopping deforestation.
Every year of delay brings reaching 1.5C – or even higher temperatures – closer.
This year, countries are unveiling new “nationally determined contributions” (NDCs), the national climate commitments aimed at collectively reducing GHG emissions and tackling climate change in line with the Paris Agreement.
While the plans put forward so far represent a step in the right direction, they still fall far short of what is needed to significantly reduce, let alone stop, the rate of warming.
At the same time, evidence-based decision-making relies on international expertise, collaboration and global datasets.
Our annual update relies on data from NASA and the National Oceanic and Atmospheric Administration (NOAA) and input from many of their highly respected scientists. It is this type of collaboration that allows scientists to generate well-calibrated global datasets that can be used to produce trusted data on changes in the Earth system.
It would not be possible to maintain the consistent long-term datasets employed in our study if their work is interrupted.
At a time when the planet is changing at the fastest rate since records began, we are at risk of failing to track key indicators – such as greenhouse gas concentrations or deep ocean temperatures – and losing core expertise that is vital for understanding the data.
The post Guest post: Why 2024’s global temperatures were unprecedented, but not surprising appeared first on Carbon Brief.
Guest post: Why 2024’s global temperatures were unprecedented, but not surprising
Climate Change
Guest post: How the world’s rivers are releasing billions of tonnes of ‘ancient’ carbon
The perception of how the land surface releases carbon dioxide (CO2) typically conjures up images of large-scale deforestation or farmers churning up the soil.
However, there is an intriguing – and underappreciated – role played by the world’s rivers.
Right now, plants and soils absorb about one-third of the CO2 released by human activity, similar to how much the oceans take up.
Over thousands to millions of years, some of this land-fixed carbon can end up being buried in sediments, where it eventually forms rocks.
The waters that feed rivers flow through plants, soils and rocks in landscapes, picking up and releasing carbon as they go.
This process is generally considered to be a sideways “leakage” of the carbon that is being taken up by recent plant growth.
However, the age of this carbon – how long it resided in plants and soils before it made it into rivers and then to the atmosphere – has remained a mystery.
If the carbon being released by rivers is young, then it can be considered a component of relatively quick carbon cycling.
However, if the carbon is old, then it is coming from landscape carbon stores that we thought were stable – and, therefore, represents a way these old carbon stores can be destabilised.
In our new study, published in Nature, we show that almost 60% of the carbon being released to the atmosphere by rivers is from these older sources.
In total, this means the world’s rivers emit more than 7bn tonnes of CO2 to the atmosphere each year – more than the annual fossil-fuel emissions from North America.
This means that there is a significant leak of carbon from old stores that we thought were safely locked away.
Previous work has shown that local land-use change, such as deforestation and climate-driven permafrost thaw, will directly release old carbon into rivers. Whether this is happening at the global scale remains a significant unknown for now.
Who are you calling old?
How do you tell how old carbon is? We employ the same technique that is used to determine the age of an archaeological relic or to verify the age of a vintage wine – that is, radiocarbon dating.
Radiocarbon is the radioactive isotope of carbon, which decays at a known rate. This enables us to determine the age of carbon-based materials dating back to a maximum age of about 60,000 years old.
We know that some of the carbon that rivers release is very young, a product of recent CO2 uptake by plants.
We also know that rivers can receive carbon from much older sources, such as the decomposition of deep soils by microbes and soil organisms or the weathering and erosion of ancient carbon in rocks.
Soil decomposition can release carbon ranging from a few years to tens of thousands of years. An example of very old soil carbon release is from thawing permafrost.
Rock weathering and erosion releases carbon that is millions of years old. This is sometimes referred to as “radiocarbon-dead” because it is so old all the radiocarbon has decayed.
Rivers are emitting old carbon
In our new study, we compile new and existing radiocarbon dates of the CO2 emissions from around 700 stretches of river around the world.
We find that almost 60% of the carbon being released to the atmosphere by rivers is from older sources (hundreds to thousands of years old, or older), such as old soil and ancient rock carbon.
In the figure below, we suggest how different processes taking place within a landscape can release carbon of different ages into rivers, driving its direct emission to the atmosphere.
So, while rivers are leaking some modern carbon from plants and soils as part of the landscape processes that remove CO2 from the atmosphere, rivers are also leaking carbon from much older landscape carbon stores.
One major implication of this finding is that modern plants and soils are leaking less carbon back to the atmosphere than previously thought, making them more important for mitigating human-caused climate change.
We find that the proportion of old carbon contributing to river emissions varies across different ecosystems and the underlying geology of the landscapes they drain.
In the figure below, we show that landscapes underlain by sedimentary rocks, which are the most likely to contain substantial ancient (or “petrogenic”) carbon, also had the oldest river emissions. We also show that the type of ecosystem (biome) was also important, although the patterns were less clear.

What is obvious is that at least some old carbon was common across most of the rivers we observed, regardless of size and location.
We provide evidence that there is a geological control on river emissions. And the variability in the ecosystem also indicates important controlling factors, such as soil characteristics, vegetation type and climate – especially rainfall patterns and temperature which are known to impact the rate of carbon release from soils and rock weathering.
Are old carbon stores stable?
Long-term carbon storage in soils and rocks is an important process regulating global climate.
For example, the UK’s peatlands are important for regulating climate because they can store carbon for thousands of years. That is why restoring peatlands is such a great climate solution.
Rivers emit more than 7bn tonnes of CO2 to the atmosphere each year – that’s equivalent to about 10-20% of the global emissions from fossil fuel burning annually.
If 60% of river carbon emissions are coming from old carbon stores, then this constitutes a significant leak of carbon from old stores we thought were safely locked away.
Another major implication of our study is that these old carbon stores can be mobilised and routed directly to the atmosphere by rivers, which would exacerbate climate change if these stores are further destabilised.
As can be seen in the figure below, we found that river carbon emissions appeared to be getting older since measurements first began in the 1990s (lower F14Catm means older radiocarbon ages).
We found that river carbon emissions appeared to be getting older since measurements first began in the 1990s.
While there are several caveats to interpreting this trend, it is a warning sign that human activities, especially climate change, could intensify the release of carbon to the atmosphere via rivers.
Given the strong link between soil carbon and river emissions, if this trend is a sign of human activity disturbing the global carbon cycle, it is likely due to landscape disturbance mobilising soil carbon.

Using rivers to monitor global soil carbon storage
Rivers collect waters from across the landscapes they flow through and therefore provide a tool to track processes happening out of sight.
A drop of water landing in a landscape travels through soils and rock before reaching the river, and its chemistry, including its radiocarbon age, reflects the processes occurring within the landscape.
Monitoring the age of carbon in rivers can therefore tell you a lot about whether their landscapes are storing or releasing carbon.
This has been shown to help identify carbon loss in degraded tropical peatlands, thawing Arctic permafrost and due to deforestation.
River radiocarbon is sensitive to environmental change and could therefore be a powerful monitoring tool for detecting the onset of climate tipping points or the success of landscape restoration projects, for example.
While we present data spread out across the world, there are quite a few gaps for important regions, notably where glacier change is happening and others where droughts and flood frequencies are changing.
These include areas with low amounts of data in Greenland, the African continent, the Arctic and Boreal zones, the Middle East, eastern Europe, western Russia, Central Asia, Australasia and South America outside of the Amazon.
All these regions have the potential to store carbon in the long-term and we do not yet know if these carbon stores are stable or not under present and future climate change.
River radiocarbon offers a powerful method to keep tabs on the health of global ecosystems both now and into the future.
The post Guest post: How the world’s rivers are releasing billions of tonnes of ‘ancient’ carbon appeared first on Carbon Brief.
Guest post: How the world’s rivers are releasing billions of tonnes of ‘ancient’ carbon
Climate Change
A National Quest for Uranium Comes to Remote Western Alaska, Raising Fears in a Nearby Village
Demand for low-carbon nuclear energy could boost uranium prospects on Alaska’s Seward Peninsula. But residents of the small village of Elim fear a mine would pollute the river they depend on.
This story was published in partnership with Northern Journal and is the second in a two-story series.
A National Quest for Uranium Comes to Remote Western Alaska, Raising Fears in a Nearby Village
-
Climate Change2 years ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change Videos2 years ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Greenhouse Gases1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Carbon Footprint1 year ago
US SEC’s Climate Disclosure Rules Spur Renewed Interest in Carbon Credits
-
Climate Change2 years ago
Why airlines are perfect targets for anti-greenwashing legal action
-
Climate Change Videos1 year ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Climate Change2 years ago
Some firms unaware of England’s new single-use plastic ban