With this blog post, we would like to introduce and launch our new cooperation with FYORD! FYORD is a joint network by CAU and GEOMAR initiated to connect and support Early Career Researchers of the marine sciences from Master’s to PostDoc level. After occasional exchanges in the past (see our blog here), we are very happy to establish a closer, long-term cooperation with FYORD.
One example of the support provided by FYORD is the Travel Grant. Any FYORD member can apply for funding to travel to conferences, workshops, and summer schools, or visit project partners or institutes. After returning from a funded trip, the FYORD members provide a short report about the event they participated in, to inspire and motivate others and share their experiences. As part of the newly established cooperation, OceanVoices will publish these reports on behalf of FYORD. Below you can find the first two reports, where Helene, Sayoni, and Xiaoqi share their experiences at the largest European geoscientific conference. Enjoy!
My experience of participating in the EGU assembly for the first time
I am Xiaoqi Xu, an exchange PhD student in GEOMAR, from the Institute of Atmospheric Physics, Chinese Academy of Sciences. My major is meteorology, and my research is about the atmosphere-ocean-sea ice interaction over the Southern Ocean as well as the development of an ocean-sea ice coupled model.
Since starting my PhD studies, I have believed that academic communication is a crucial part of scientific research. With the scholarship supported by the University of Chinese Academy of Sciences, I had an opportunity to go to GEOMAR for a one-year exchange program. Under the guidance of Torge Martin, a scientist in the Ocean Dynamics group in GEOMAR, I am studying the mechanism of the atmospheric response to freshwater input around Antarctica based on FOCI (the fully coupled climate model developed by GEOMAR).
I am delighted to have received funding from FYORD and was pleasantly surprised that guest students like me are eligible for the same benefits. I applied for funding to participate in the General Assembly of the European Geosciences Union (EGU). EGU General Assembly is a fantastic event in the geoscience community, held annually in Vienna. This year, the conference featured 18,896 presentations, with early-career scientists accounting for 57%, making it an excellent platform for young researchers. Six months before the conference, I decided to organize my research with Torge and present it at this international event to promote our work. Since we didn’t have project funding related to this topic at the time, I learned about FYORD and applied for funding with the help and advice of colleagues, receiving a positive response quickly, which was a pleasant surprise.
-

Xiaoqi Xu giving her talk -

A crowded meeting room -

The exhibition hall
A month before the conference, I spent a lot of time and effort perfecting my presentation. The EGU venue is vast, with a lot of sessions and a tight schedule, so to attend the talks of interest, it’s essential to plan and bookmark them in advance. I gave an 8-minute oral presentation (plus 2 minutes for discussion), requiring careful management of my content due to the time constraints. Oral presentations provide an opportunity to systematically convey my research and enhance my presentation skills. For researchers, it’s crucial not only to conduct research but also to articulate it logically.
In addition to oral presentations, the poster sessions were a pleasant surprise for me because they allowed for more extended discussions (1-2 hours) with other scientists in similar fields. If given the chance, I would consider presenting a poster in the future.
During the conference, my days were filled with attending talks and visiting the poster sessions, where I could chat over coffee. This intense exchange of ideas, both giving and receiving, is a highlight. Although we cannot remember every detail of each talk, the main goal of such conferences is to know about what scientists worldwide are working on and what improvements are needed. Additionally, it’s a large social platform where you can meet your old friends, make new ones, and learn about various institutions, which can help in future career decisions.
The overall experience of the conference was very positive, and the venue was modern and well-organized. I highly recommend attending EGU. Of course, one small gripe is that lunchtime can be extremely crowded, with lines for food stalls exceeding 40 minutes, so bringing your own lunch might be a good idea to avoid missing out on sessions.
Xiaoqi Xu
Sayoni’s experience at EGU 2024
Hello, I am Sayoni Bhattacharya and I am currently working as a Ph.D. student in GEOMAR, Kiel. My topic of research is to develop an autonomous sensor for measuring Dissolved Inorganic Carbon (DIC) in seawater.
I applied for a travel grant from FYORD to attend the EGU 2024 conference. The conference was held in Vienna, Austria from 14-19th April 2024. EGU is considered one of the biggest conferences in Europe in the field of Earth Science. According to this year’s survey, almost 20,000 people attended from all over the world. EGU is a successful concoction of ocean, land, and space science, where curious scientists can develop a network with peers from similar expertise, or they can expose themselves to other genres of science to get a new flavour. There were parallel sessions of talks and posters for consecutive days. With the help of the EGU24 app, a curious person can navigate through all the sessions and choose to attend specific sessions. Moreover, several companies, and publishing houses e.g., Pyroscience, ThermoScientific, and Elsevier showcased their products in company booths. I was particularly interested in sensors which were commercially available to measure gases or liquids using different working principles.
-

Sayoni at EGU 2024 -

Discussion research during the poster session
In EGU 2024, I applied for a short talk but in the end, my abstract was selected for a poster presentation and I presented my Ph.D.-related work. I communicated with many scientists, from early career scientists like myself to well-known professors. In each interaction, I felt that I explored a new way of thinking about my own work and I can translate that idea to my next discussion. I felt that the poster sessions were more active and dynamic than talks.
My overall feeling about EGU 2024 is bittersweet. I like the idea of connecting scientists of different backgrounds from any corner of the world and making it a successful event without any visible problems. On the other hand, it felt robotic, as from getting the ID badge to hovering around a session is all done without any human interaction. Finally, from my very personal feeling, I would like to say that the cost to attend EGU is very expensive and no food was served (except for drinks at a few specific times).
Sayoni Bhattacharya
A short report on visiting Europe’s largest geoscience conference
My name is Helene-Sophie Hilbert and I am a doctoral researcher at GEOMAR Helmholtz Centre for Ocean Research Kiel. My research belongs to the field of marine geophysics, a discipline which studies the physical processes and the physical properties of the Earth within the marine environment. My main work focuses on the back-arc basin and active volcanic island arc in the Mariana Subduction zone in the north-western Pacific. I am fascinated by these geologic settings because they are regarded as highly dynamic regions encompassing oceanic and continental domains. While island arcs are considered prime locations for the growth of continental crust, back-arc basins play a major role in the opening and closure of ocean gateways. To gain information about the structures in the crust and upper mantle in the Marianas, I use ocean bottom seismometers that record seismic signals on the seafloor and analyse these signals by generating a seismic tomography (a bit more abstract version of computer tomography, you may know from your doctor).
-

Some FYORD travel grand recipients -

Helene presenting her Poster
From 14-19 April 2024, I now had the opportunity to present my research about the youngest back-arc basin, the Mariana Trough, at the European Geoscience Union (EGU) General Assembly in Vienna. The EGU General Assembly is Europe’s largest and most prominent geoscience event with more than 20,000 participants this year from all over the world. I presented my research results in the form of a scientific poster in a session focusing on the geological processes inside subduction zones during their initiation and later evolution. This presentation format gave me the chance to have in-depth discussions with other experts on the individual aspects of my interpretation. Due to the nearly 19,000 presentations during the EGU General Assembly, it was possible to get a wide overview of the current hot topics in the geoscience community and to meet scientists from all kinds of disciplines and institutes. Although the programme was very tightly scheduled, there was still plenty of time for networking. For me personally, it was quite extraordinary and sometimes overwhelming due to the sheer flood of information. But I would still recommend to every geoscientist to have this experience and benefit from the direct exchange with the community. I am therefore grateful that I was given this opportunity thanks to the support in the form of the FYORD Travel Grant.
Helene
FYORD Travel Grant Reports: Impressions from the largest European geoscientific conference
Ocean Acidification
What is Coral Bleaching and Why is it Bad News for Coral Reefs?
Coral reefs are beautiful, vibrant ecosystems and a cornerstone of a healthy ocean. Often called the “rainforests of the sea,” they support an extraordinary diversity of marine life from fish and crustaceans to mollusks, sea turtles and more. Although reefs cover less than 1% of the ocean floor, they provide critical habitat for roughly 25% of all ocean species.
Coral reefs are also essential to human wellbeing. These structures reduce the force of waves before they reach shore, providing communities with vital protection from extreme weather such as hurricanes and cyclones. It is estimated that reefs safeguard hundreds of millions of people in more than 100 countries.
What is coral bleaching?
A key component of coral reefs are coral polyps—tiny soft bodied animals related to jellyfish and anemones. What we think of as coral reefs are actually colonies of hundreds to thousands of individual polyps. In hard corals, these tiny animals produce a rigid skeleton made of calcium carbonate (CaCO3). The calcium carbonate provides a hard outer structure that protects the soft parts of the coral. These hard corals are the primary building blocks of coral reefs, unlike their soft coral relatives that don’t secrete any calcium carbonate.
Coral reefs get their bright colors from tiny algae called zooxanthellae. The coral polyps themselves are transparent, and they depend on zooxanthellae for food. In return, the coral polyp provides the zooxanethellae with shelter and protection, a symbiotic relationship that keeps the greater reefs healthy and thriving.
When corals experience stress, like pollution and ocean warming, they can expel their zooxanthellae. Without the zooxanthellae, corals lose their color and turn white, a process known as coral bleaching. If bleaching continues for too long, the coral reef can starve and die.

Ocean warming and coral bleaching
Human-driven stressors, especially ocean warming, threaten the long-term survival of coral reefs. An alarming 77% of the world’s reef areas are already affected by bleaching-level heat stress.
The Great Barrier Reef is a stark example of the catastrophic impacts of coral bleaching. The Great Barrier Reef is made up of 3,000 reefs and is home to thousands of species of marine life. In 2025, the Great Barrier Reef experienced its sixth mass bleaching since 2016. It should also be noted that coral bleaching events are a new thing because of ocean warming, with the first documented in 1998.
Get Ocean Updates in Your Inbox
Sign up with your email and never miss an update.
How you can help
The planet is changing rapidly, and the stakes have never been higher. The ocean has absorbed roughly 90% of the excess heat caused by anthropogenic greenhouse gas emissions, and the consequences, including coral die-offs, are already visible. With just 2℃ of planetary warming, global coral reef losses are estimated to be up to 99% — and without significant change, the world is on track for 2.8°C of warming by century’s end.
To stop coral bleaching, we need to address the climate crisis head on. A recent study from Scripps Institution of Oceanography was the first of its kind to include damage to ocean ecosystems into the economic cost of climate change – resulting in nearly a doubling in the social cost of carbon. This is the first time the ocean was considered in terms of economic harm caused by greenhouse gas emissions, despite the widespread degradation to ocean ecosystems like coral reefs and the millions of people impacted globally.
This is why Ocean Conservancy advocates for phasing out harmful offshore oil and gas and transitioning to clean ocean energy. In this endeavor, Ocean Conservancy also leads international efforts to eliminate emissions from the global shipping industry—responsible for roughly 1 billion tons of carbon dioxide every year.
But we cannot do this work without your help. We need leaders at every level to recognize that the ocean must be part of the solution to the climate crisis. Reach out to your elected officials and demand ocean-climate action now.
The post What is Coral Bleaching and Why is it Bad News for Coral Reefs? appeared first on Ocean Conservancy.
What is Coral Bleaching and Why is it Bad News for Coral Reefs?
Ocean Acidification
What is a Snipe Eel?
From the chilly corners of the polar seas to the warm waters of the tropics, our ocean is bursting with spectacular creatures. This abundance of biodiversity can be seen throughout every depth of the sea: Wildlife at every ocean zone have developed adaptations to thrive in their unique environments, and in the deep sea, these adaptations are truly fascinating.
Enter: the snipe eel.
What Does a Snipe Eel Look Like?
These deep-sea eels have a unique appearance. Snipe eels have long, slim bodies like other eels, but boast the distinction of having 700 vertebrae—the most of any animal on Earth. While this is quite a stunning feature, their heads set them apart in even more dramatic fashion. Their elongated, beak-like snouts earned them their namesake, strongly resembling that of a snipe (a type of wading shorebird). For similar reasons, these eels are also sometimes called deep-sea ducks or thread fish.

How Many Species of Snipe Eel are There?
There are nine documented species of snipe eels currently known to science, with the slender snipe eel (Nemichthys scolopaceus) being the most studied. They are most commonly found 1,000 to 2,000 feet beneath the surface in tropical to temperate areas around the world, but sightings of the species have been documented at depths exceeding 14,000 feet (that’s more than two miles underwater)!
How Do Snipe Eels Hunt and Eat?
A snipe eel’s anatomy enables them to be highly efficient predators. While their exact feeding mechanisms aren’t fully understood, it’s thought that they wiggle through the water while slinging their beak-like heads back and forth with their mouths wide open, catching prey from within the water column (usually small invertebrates like shrimp) on their hook-shaped teeth.
How Can Snipe Eels Thrive So Well in Dark Depths of the Sea?
Snipe eels’ jaws aren’t the only adaptation that allows them to thrive in the deep, either. They also have notably large eyes designed to help them see nearby prey or escape potential predators as efficiently as possible. Their bodies are also pigmented a dark grey to brown color, a coloring that helps them stay stealthy and blend into dark, dim waters. Juveniles are even harder to spot than adults; like other eel species, young snipe eels begin their lives as see-through and flat, keeping them more easily hidden from predators as they mature.
Get Ocean Updates in Your Inbox
Sign up with your email and never miss an update.
How Much Do Scientists Really Know About Snipe Eels?
Residence in the deep sea makes for a fascinating appearance, but it also makes studying animals like snipe eels challenging. Scientists are still learning much about the biology of these eels, including specifics about their breeding behaviors. While we know snipe eels are broadcast spawners (females release eggs into the water columns at the same time as males release sperm) and they are thought to only spawn once, researchers are still working to understand if they spawn in groups or pairs. Beyond reproduction, there’s much that science has yet to learn about these eels.
Are Snipe Eels Endangered?
While the slender snipe eel is currently classified as “Least Concern” on the International Union for the Conservation of Nature’s Red List of Threatened Species, what isn’t currently known is whether worldwide populations are growing or decreasing. And in order to know how to best protect these peculiar yet equally precious creatures, it’s essential we continue to study them while simultaneously working to protect the deep-sea ecosystems they depend on.
How Can We Help Protect Deep-Sea Species Like Snipe Eels?
One thing we can do to protect the deep sea and the wildlife that thrive within it is to advocate against deep-sea mining and the dangers that accompany it. This type of mining extracts mineral deposits from the ocean floor and has the potential to result in disastrous environmental consequences. Take action with Ocean Conservancy today and urge your congressional representative to act to stop deep-sea mining—animals like snipe eels and all the amazing creatures of the deep are counting on us to act before it’s too late.
The post What is a Snipe Eel? appeared first on Ocean Conservancy.
Ocean Acidification
5 Animals That Need Sea Ice to Thrive
Today, we’re getting in the winter spirit by spotlighting five remarkable marine animals that depend on cold and icy environments to thrive.
1. Narwhals
Narwhals are often called the “unicorns of the sea” because of their long, spiraled tusk. Here are a few more fascinating facts about them:
- Believe it or not, their tusk is actually a tooth used for sensing their environment and sometimes for sparring.
- Narwhals are whales. While many whale species migrate south in the winter, narwhals spend their entire lives in the frigid waters of the circumpolar Arctic near Canada, Greenland and Russia.
- Sea ice provides narwhals with protection as they travel through unfamiliar waters.
2. Walruses
Walruses are another beloved Arctic species with remarkable adaptations for surviving the cold:
- Walruses stay warm with a thick layer of blubber that insulates their bodies from icy air and water.
- Walruses can slow their heart rate to conserve energy and withstand freezing temperatures both in and out of the water.
- Walruses use sea ice to rest between foraging dives. It also provides a vital and safe platform for mothers to nurse and care for their young.
Get Ocean Updates in Your Inbox
Sign up with your email and never miss an update.
3. Polar Bears
Polar bears possess several unique traits that help them thrive in the icy Arctic:
- Although polar bear fur appears white, each hair is hollow and transparent, reflecting light much like ice.
- Beneath their thick coats, polar bears have black skin that absorbs heat from the sun. This helps keep polar bears warm in their icy habitat.
- Polar bears rely on sea ice platforms to access their primary prey, seals, which they hunt at breathing holes in the ice.
4. Penguins
Penguins are highly adapted swimmers that thrive in icy waters, but they are not Arctic animals:
- Penguins live exclusively in the Southern Hemisphere, mainly Antarctica, meaning they do not share the frigid northern waters with narwhals, walruses and polar bears.
- Penguins spend up to 75% of their lives in the water and are built for efficient aquatic movement.
- Sea ice provides a stable platform for nesting and incubation, particularly for species like the Emperor penguin, which relies on sea ice remaining intact until chicks are old enough to fledge.
5. Seals
Seals are a diverse group of carnivorous marine mammals found in both polar regions:
- There are 33 seal species worldwide, with some living in the Arctic and others in the Antarctic.
- There are two groups of seals: Phocidae (true seals) and Otariidae (sea lions and fur seals). The easiest way to tell seals and sea lions apart is by their ears: true seals have ear holes with no external flaps, while sea lions and fur seals have small external ear flaps.
- Seals need sea ice for critical life functions including pupping, nursing and resting. They also use ice for molting—a process in which they shed their fur in the late spring or early summer.
Defend the Central Arctic Ocean Action
Some of these cold-loving animals call the North Pole home, while others thrive in the polar south. No matter where they live, these marine marvels rely on sea ice for food, safety, movement and survival.
Unfortunately, a rapidly changing climate is putting critical polar ecosystems, like the Central Arctic Ocean, at risk. That is why Ocean Conservancy is fighting to protect the Central Arctic Ocean from threats like carbon shipping emissions, deep-sea mining and more. Take action now to help us defend the Central Arctic Ocean.
Learn more
Did you enjoy these fun facts? Sign up for our mobile list to receive trivia, opportunities to take action for our ocean and more!
The post 5 Animals That Need Sea Ice to Thrive appeared first on Ocean Conservancy.
-
Greenhouse Gases6 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Climate Change6 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Climate Change2 years ago
Bill Discounting Climate Change in Florida’s Energy Policy Awaits DeSantis’ Approval
-
Greenhouse Gases2 years ago嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change2 years ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change2 years ago嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change Videos2 years ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Carbon Footprint2 years agoUS SEC’s Climate Disclosure Rules Spur Renewed Interest in Carbon Credits

