Connect with us

Published

on

$6 Billion Tax Credits to Power America's Clean Energy Future

The United States is advancing its clean energy ambitions with the allocation of $6 billion in tax credits under the Inflation Reduction Act’s §48C Qualifying Advanced Energy Project Tax Credit (48C program). Administered by the Department of the Treasury and IRS, the funding will support over 140 projects across more than 30 states. 

The focus: boosting clean energy manufacturing, recycling critical materials, and decarbonizing industrial processes. This move underscores the Biden administration’s commitment to building a low-carbon energy future while fostering economic growth in energy-dependent communities.

What is the 48C Program?

The 48C program was initially introduced in 2009 to encourage investments in clean energy infrastructure. Expanded under the Inflation Reduction Act (IRA), it now includes $10 billion in tax credits, with at least 40% reserved for energy communities—regions with economies historically tied to fossil fuels. These communities, often home to closed coal mines or retired power plants, are crucial for the nation’s equitable energy transition.

Since its inception, the program has successfully incentivized over 250 projects. It has unlocked over $44 billion in private investments and created an estimated 30,000 construction jobs.

The second round of tax credits focuses on three core areas:

Clean Energy Manufacturing and Recycling ($3.8 billion)

This allocation supports projects to bolster the domestic production of renewable energy components. Beneficiaries include facilities manufacturing hydrogen electrolyzers, solar photovoltaic systems, wind turbine parts, and EV battery components. These investments help localize clean energy supply chains, reducing dependence on imports and reinforcing energy security. 

Critical Materials Processing and Recycling ($1.5 billion)

Critical materials like lithium, copper, and rare earth elements are essential for clean energy technologies. This funding supports refining and recycling these materials, addressing both supply chain vulnerabilities and environmental concerns.
For example, projects refining lithium for EV batteries or recycling spent lithium-ion batteries contribute to sustainable resource management.

Industrial Decarbonization ($700 million)

The industrial sector, responsible for nearly a quarter of U.S. greenhouse gas emissions, is a major focus of decarbonization efforts. This funding supports initiatives like installing heat pumps, electric boilers, and other advanced technologies that reduce carbon emissions.
Projects in this category aim to eliminate around 2.8 million metric tons of emissions annually, equivalent to taking over 600,000 cars off the road.

IRA expanded 48C scope and intended impact
Image from the Office of Manufacturing and Energy Supply Chains

Key Impacts of the 48C Program

  • Strengthening Domestic Supply Chains

The 48C program plays a critical role in addressing vulnerabilities in the U.S. clean energy supply chain. For instance, 80% of global solar panel components are produced in Asia, primarily China. The program incentivizes domestic production to reduce reliance on imports, fostering energy independence and strengthening national security. 

Since its inception, the program has been associated with over $2 billion in domestic investments in advanced manufacturing projects, according to Department of Energy estimates.

  • Supporting Energy Communities

Energy communities, often dependent on fossil fuel industries, face economic hardships as the nation transitions to cleaner energy. The 48C program reserves at least 40% of its $10 billion allocation for these regions, ensuring they reap the benefits of renewable energy growth. 

This targeted support has led to infrastructure projects and job creation in historically underserved areas. For example, in 2023, regions like Appalachia and the Gulf Coast witnessed clean energy investments estimated at $1 billion, significantly boosting local economies.

  • Reducing Carbon Emissions

By supporting decarbonization in heavy industries like steel, cement, and chemicals, the program significantly lowers greenhouse gas emissions. According to EPA estimates, initiatives funded under the 48C program have the potential to reduce carbon dioxide emissions by over 30 million metric tons annually—the equivalent of removing 6.5 million cars from the road each year.

This blend of economic, social, and environmental benefits underlines the 48C program’s pivotal role in steering the U.S. toward a sustainable and equitable energy future.

Ashley Zumwalt-Forbes, Deputy Director for Batteries and Critical Materials at the U.S. Department of Energy (DOE), remarked on the announcement, stating that:

“Particularly noteworthy is the allocation of $1.5 billion towards critical materials recycling, processing, and refining projects – a sector that has outsized importance in our nation’s economic security. “

Critical Minerals: Driving the Clean Energy Future

Critical minerals are at the heart of the global energy transition, powering technologies like EVs and renewable energy systems. The International Energy Agency (IEA) reports that demand for these materials surged in 2023, with lithium demand jumping by 30% and nickel, cobalt, and rare earths increasing by 8-15%.

  • By 2040, the combined market value of critical minerals could exceed $770 billion in the IEA’s Net Zero Scenario.

critical minerals market value by 2040 per IEA report

The United States and its allies are working to reduce dependence on foreign sources, especially China’s dominance over 60-70% of global lithium and cobalt supplies. Measures like the U.S. Defense Production Act aim to strengthen domestic production. 

Canada has committed CA$3.8 billion to critical mineral initiatives, though experts emphasize the need to fast-track permitting and expand production.

Moreover, despite slower growth compared to 2022, critical mineral investments increased by 10% in 2023, per the IEA data. Lithium specialists led the surge, with investments rising 60%, even amid weak prices. Exploration spending grew by 15%, driven by Canada and Australia.

critical mineral investments in 2023 per IEA

Venture capital spending also climbed 30%, with notable growth in battery recycling offsetting reduced funding for mining and refining start-ups. China’s investment in overseas mines hit a record $10 billion in the first half of 2023. The funding focuses on battery metals like lithium, nickel, and cobalt, underscoring its strategic interest in securing critical resources.

From Credits to Clean Energy Transformation 

Overall, the clean energy sector requires rapid scaling to meet demand, particularly as the U.S. aims to transition to renewable energy sources. By leveraging the $6 billion allocation from the 48C program, America can position itself as a global leader in clean energy innovation. 

By prioritizing domestic production, addressing supply chain vulnerabilities, and supporting energy communities, the 48C program is reducing emissions while laying the groundwork for a sustainable and low-carbon energy future.

The post $6 Billion Tax Credits to Power America’s Clean Energy Future appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Rio Tinto and Hydro Invest $45 Million to Cut Aluminum Emissions

Published

on

Rio Tinto and Hydro Invest $45M to Cut Aluminum Emissions

Aluminum is everywhere, from cars to cans, but its production is a major carbon polluter. With global aluminum demand soaring, Rio Tinto and Hydro will $45 million in carbon capture tech to cut emissions. Could this be the breakthrough the industry needs?

The Carbon Footprint of Aluminum: A Heavyweight Problem

Aluminum production accounts for about 2% of global carbon emissions. The industry emits about 1.1 billion metric tons of CO₂ per year. That’s the same as the emissions from 150 million U.S. homes.

The electrolysis process alone is responsible for 791 million metric tons. Electrolysis is the main step in aluminum smelting. It uses carbon anodes, which release CO₂ during the process. This stage accounts for around 75% of a smelter’s direct CO₂ emissions.

With transportation, construction, and packaging relying on aluminum, we must reduce its environmental impact. Many aluminum producers are now seeking ways to cut emissions and reach net-zero targets.

A $45 Million Push for Carbon Capture

To tackle this, Rio Tinto and Hydro will invest $45 million over the next five years to develop carbon capture technologies for aluminum smelting. Smelting takes up most of the total GHG emissions of aluminum production. 

aluminum production emissions
Source: Carbon Chain

The partnership focuses on finding, testing, and scaling up methods to capture and store CO₂ emissions from the electrolysis process. The initiative includes:

  • Testing carbon capture technologies from laboratory research to real-world applications.
  • Running pilot projects at Rio Tinto’s facilities in Europe and Hydro’s sites in Norway.
  • Sharing research, costs, and expertise to accelerate progress.

Why Carbon Capture Is Difficult in Aluminum Smelting

Capturing carbon in aluminum production is more challenging than in other industries like power generation. This is because CO₂ levels in aluminum smelter emissions are extremely low (only about 1% by volume). This makes conventional carbon capture methods less effective.

There are two main approaches to capturing CO₂ from aluminum smelters:

  • Point source carbon capture: This technology captures emissions at the source but must be adapted for lower CO₂ concentrations.
  • Direct air capture (DAC): While typically used to remove CO₂ from the atmosphere, DAC could be modified to work in aluminum smelters.

Both methods need significant development to move from the lab to full-scale commercial use. This is where Rio Tinto and Hydro’s investment plays a key role in advancing these technologies.

Racing Toward Net-Zero: Can They Pull It Off?

This partnership is part of a broader push toward decarbonizing aluminum production. Both companies have already been working on independent initiatives, including:

  • ELYSIS (Rio Tinto & Alcoa): A joint venture focused on developing carbon-free aluminum smelting technology.
  • HalZero (Hydro): A new smelting process that eliminates CO₂ emissions from aluminum production.

While these long-term projects aim to create zero-emission aluminum, carbon capture can help reduce emissions from existing smelters. By combining their expertise, Rio Tinto and Hydro hope to make these technologies commercially viable sooner.

The Surge in Demand for Green Aluminum

As industries transition toward sustainable materials, demand for low-carbon aluminum is rising. Companies in automotive, construction, and packaging are seeking greener alternatives to meet climate targets.

Global aluminum demand is projected to rise nearly 40% by 2030, according to CRU International’s report for the International Aluminium Institute (IAI). The industry must produce an extra 33.3 million metric tons (Mt), increasing from 86.2 Mt in 2020 to 119.5 Mt in 2030. Key drivers of this growth include transportation, construction, packaging, and the electrical sector, which will account for 75% of total demand. 

aluminum use by sector 2030
Source: CRU

China will remain the largest consumer of semi-finished aluminum products by 2030. The Asian country makes up for over 45% of the market since 2015.

aluminum demand growth by sector 2030

As industries push for lighter, more sustainable materials, aluminum’s role in global manufacturing will expand. This emphasizes the need for efficient production and decarbonization efforts to meet the rising demand sustainably.

Regulations are also pushing aluminum producers to reduce emissions. Governments worldwide are setting stricter carbon limits and introducing carbon pricing mechanisms that penalize high-emission industries. Carbon capture for aluminum production could give Rio Tinto and Hydro a competitive edge in this evolving market.

Beyond Carbon Capture: Other Ways to Cut Emissions

Beyond carbon capture, the aluminum industry is exploring other solutions to reduce emissions and energy use:

  • Recycled Aluminum: Producing aluminum from recycled materials uses 95% less energy than primary production. Expanding aluminum recycling can significantly cut industry-wide emissions.
  • Inert Anodes: Traditional carbon anodes release CO₂ during electrolysis, but inert anodes could eliminate these emissions. This technology is still in development but shows great potential.
  • Renewable Energy-Powered Smelters: Switching from fossil fuels to solar, wind, or hydroelectric power can drastically reduce emissions from aluminum production.

By combining these strategies with carbon capture, the industry can move closer to achieving net-zero emissions.

Rio Tinto and Hydro’s partnership marks a major step toward decarbonizing aluminum smelting. If successful, their investment could lead to groundbreaking advancements that benefit the entire sector. By working together, they are taking a critical step toward making low-carbon aluminum a reality—a move that aligns with global climate goals and industry sustainability efforts.

The post Rio Tinto and Hydro Invest $45 Million to Cut Aluminum Emissions appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Palantir Reports Record-Breaking Q4 and Net Zero Success

Published

on

palantir

Palantir Technologies Inc. (NASDAQ: PLTR) released its financial results for the fourth quarter ending December 31, 2024. The company showed strong growth in key areas. Its success mainly came from its artificial intelligence (AI) solutions, which integrate advanced technology into commercial and government sectors.

Their core work revolves around combining AI and machine learning, helping clients analyze data more efficiently and make smarter decisions. They work closely with the U.S. Department of Defense, intelligence agencies, and global allies to improve data management, strengthen decision-making processes, and enhance security. This is how it plays a vital role in both the public and private sectors.

Alexander C. Karp, Co-Founder and Chief Executive Officer of Palantir Technologies Inc. said,

“Our business results continue to astound, demonstrating our deepening position at the center of the AI revolution. Our early insights surrounding the commoditization of large language models have evolved from theory to fact. I would also like to congratulate Palantirians for their extraordinary contributions to our growth. They have earned every bit of the compensation from the delivery of their market-vesting stock appreciation rights (SARs).”

U.S. Market Fuels Palantir’s Strong Q4 Performance

Palantir’s fourth-quarter results reflected significant growth in the U.S. market.

  • Total revenue reached $828 million, a 36% year-over-year increase and 14% growth from the previous quarter.
  • U.S. revenue alone surged 52% compared to the prior year, hitting $558 million.

In the commercial sector, U.S. revenue climbed 64% year-over-year, reaching $214 million, while government revenue grew by 45% to $343 million. The company also set a record by closing $803 million in total contract value (TCV) for U.S. commercial deals, marking a 134% increase year-over-year.

Karp also noted,

“The demand for large language models from commercial institutions in the United States continues to be unrelenting. Every part of our organization is focused on the rollout of our Artificial Intelligence Platform (AIP), which has gone from a prototype to a product in months. And our momentum with AIP is now significantly contributing to new revenue and new customers.” 

Financial Highlights in Q4

The company achieved impressive operational and financial results during the quarter which further indicated a strong performance. The key success parameters were:

  • Generated $460 million in cash from operations, reflecting a healthy 56% margin. Additionally, its adjusted free cash flow climbed to $517 million, with a higher margin of 63%.

On the earnings front, Palantir reported a GAAP net income of $79 million, equivalent to $0.03 per share. When excluding one-time stock-related expenses, net income significantly increased to $165 million, or $0.07 per share. Furthermore, the company’s adjusted earnings per share (EPS) rose to $0.14, which drove its shareholder value.

Palantir revenue
Source: Palantir

Expanding Customer Base and Key Deals

Palantir added new customers at a rapid pace, with its customer base growing 43% compared to the previous year. The company closed 129 deals worth at least $1 million, 58 deals valued at $5 million or more, and 32 deals exceeding $10 million.

The company’s remaining deal value (RDV) for U.S. commercial contracts rose to $1.79 billion, nearly doubling from the prior year. These figures highlight Palantir’s growing influence across industries.

Fiscal Year 2024 Was All About Sustained Growth

Palantir delivered strong results for the full year, with total revenue reaching $2.87 billion—an impressive 29% growth compared to the previous year.

The U.S. market played a key role, contributing $1.9 billion to the total. Commercial revenue saw remarkable growth, surging 54% to $702 million, while government revenue increased 30%, reaching $1.2 billion.

Other significant revenue drivers were: 

  • Robust cash flow that generated $1.15 billion from operations with a solid 40% margin.
  • It reported an annual net income of $462 million. It reflected a 16% margin with sustainable profitability.
  • With $5.2 billion in cash and short-term investments, Palantir envisions growth and expansion in the future. 

Palantir’s 2025 Outlook: Strong Growth Ahead

The company is already envisioning strong financial expectations for 2025, projecting solid growth across several key areas. For the first quarter of 2025, the company anticipates:

  • Revenue between $858 million and $862 million.
  • Adjusted operating income between $354 million and $358 million.

For the full year 2025, Palantir anticipates total revenue between $3.741 billion and $3.757 billion, driven by a growth rate of at least 54% in U.S. commercial revenue, which is expected to exceed $1.079 billion.

The company is also projecting adjusted operating income to range between $1.551 billion and $1.567 billion, with adjusted free cash flow between $1.5 billion and $1.7 billion. It will also continue to report GAAP operating income and net income each quarter, ensuring transparency while navigating the ambitious targets.

Palantir’s Commitment to Net Zero

Palantir Technologies UK achieved carbon neutrality in 2023 which was a significant milestone in its sustainability journey. The company retired carbon credits to offset all remaining emissions, aligning with its 2021 Climate Pledge.

Committed to achieving Net Zero, Palantir is focused on reducing emissions further and aligning with the UK Carbon Reduction Plan that focuses on limiting global warming to 1.5°C.

Total Carbon Emissions 2023

While Palantir acknowledges that its direct emissions—Scope 1, 2, and 3—are relatively small on a global scale, it believes its greatest contribution lies in empowering its customers. In this perspective, the company helps businesses track and reduce emissions, particularly within complex supply chains.

Its tools are already enabling companies to transition to clean energy and adopt e-mobility solutions, paving the way for a Net Zero future.

  • In 2023, Palantir reported emissions totaling 4,196 tCO2e, a significant drop from its baseline year emissions of 7,161 tCO2e in 2019.
Palantir carbon emissions
Source: Palantir

Renewable Energy Goals

Palantir has joined forces with leading organizations to accelerate global sustainability efforts. The company plays a vital role in helping its partners decarbonize supply chains, enhance grid resilience, and roll out EV networks. Its innovative Agora platform, launched in 2022, enables global commodity companies to track and reduce emissions across the value chain.

The company also supports renewable energy projects and uses digital twin technology to improve efficiency in energy-intensive industries.

Mitigating Cloud Compute and Data Center Emissions

Cloud computing has been one of Palantir’s biggest sources of carbon emissions. However, advancements in cloud efficiency and the use of sustainable energy by partners like AWS, Microsoft Azure, and Google Cloud have significantly reduced this impact.

  • In 2023, Palantir cut cloud-related emissions by 32% compared to the previous year.

This progress came from improved compute efficiency in its platforms—Foundry, Gotham, Apollo, and the Artificial Intelligence Platform (AIP)—along with ongoing engineering efforts.

The company’s teams are continuously finding new ways to optimize cloud usage. By balancing efficiency with business growth, Palantir stays on track with its sustainability goals.

Slashing Travel Emissions with SAF

As a global company, business travel is essential to Palantir’s operations which also impacts its Scope 3 emissions. To reduce this impact, Palantir encourages employees to opt for virtual meetings when possible and carefully considers the need for in-person meetings to balance environmental and business needs.

In 2023, Palantir also continued its partnership with United Airlines’ Eco-Skies Alliance, committing to the use of sustainable aviation fuel (SAF) for its air travel. This initiative aims to lower its travel-related emissions while still supporting face-to-face collaboration.

Palantir’s impressive financial results in 2024 along with its reduced carbon emissions, highlight its commitment to both growth and sustainability. The company is on track to continue innovating and expanding, setting itself up for long-term success.

The post Palantir Reports Record-Breaking Q4 and Net Zero Success appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Clean Energy Investment Hits $2.1 Trillion: A Step Closer to Net Zero or a Missed Mark?

Published

on

clean energy

Global investment in energy transition technologies reached an all-time high of $2.1 trillion in 2024, according to BloombergNEF. This marked an 11% increase from the previous year, driven by EVs, renewable energy, and advanced grid infrastructure. While the record-breaking investment highlights growing momentum toward cleaner energy solutions, experts caution that current funding levels fall far short of what’s needed to meet global climate targets.

Countries are ramping up investments in low-carbon energy to tackle climate change and meet Paris Agreement targets. However, experts warn that the current spending pace isn’t enough.

Bloomberg’s latest Energy Transition Investment Trends report shows that to hit net-zero emissions by 2050, global investment needs to triple to $5.6 trillion annually between 2025 and 2030. The gap is massive, highlighting the urgent need for bigger commitments and faster action.

Why do Energy Transition Investments Matter for Net Zero?

The energy sector plays a crucial role in addressing climate change as it contributes to approximately 75% of global greenhouse gas emissions. With temperatures rising every year, this transition to clean energy has become increasingly urgent.

Countries have committed to reducing emissions sustainably, aiming to keep global temperature rise below 2°C and limiting it to 1.5°C. The Paris Agreement target would be fulfilled only when the energy sector can reach net zero emissions by 2050.  

This transition significantly requires phasing out fossil fuels fairly and systematically while eliminating inefficient fossil fuel subsidies that hinder transition.

energy transition investment

Closing the Funding Gap  

Now talking about the key factor i.e. investments. Governments and businesses are focusing on sustainable solutions like electric vehicles (EVs) and renewable energy. This certainly gives a positive signal towards developing a low-carbon economy.

However, there’s a funding gap. As said before, global investments in energy transition technologies reached $2.1 trillion. Yet, this amount is only 37% of the annual $5.6 trillion required from 2025 to 2030 to meet net-zero targets.

Achieving the net zero target will require not only increased funding but also bold policies and stronger international cooperation. Governments will need to be more decisive in scaling up efforts, remove barriers, and foster innovation across energy sectors.

For instance, accelerating progress in renewable energy, electrified transport, and grid modernization. With faster progress the funding gap can close and combating climate change will be easier.

Which Sector Took the Lead?

The report revealed that last year electrified transport topped the charts, pulling in $757 billion in funding. This includes investment in electric cars, commercial EV fleets, public charging networks, and fuel cell vehicles. With the EV market booming, it’s clear the world is betting big on cleaner mobility solutions.

Renewable energy also performed well. Globally $728 billion was invested in wind, solar, biofuels, and other green power sources. Additionally, power grid modernization secured $390 billion for upgrades like smarter grids, improved transmission lines, and digital tools to manage energy demand. Nuclear investment was flat at $34.2 billion.

In contrast, investment in emerging technologies, like electrified heat, hydrogen, carbon capture and storage (CCS), nuclear, clean industry and clean shipping, reached only $155 billion, for an overall drop of 23% year-on-year.

Investment in these sectors was hampered by affordability, technology maturity, and commercial scalability. Thus, the public and private sectors must work together to progress these technologies to reduce emissions.

Mature vs. Emerging: Where Clean Energy Investments Stand

Bloomberg further categorized investments into “mature” and “emerging” sectors. Mature technologies like renewables, energy storage, EVs, and power grids dominated funding while emerging sectors such as hydrogen, CCS, electrified heating, clean shipping, nuclear, and sustainable industries lagged.

  • The mature Sector attracted $1.93 trillion in investments, accounting for the bulk of global energy transition funding.
  • The emerging sector closed $154 billion in investments, making up just 7% of the total.

Despite facing challenges like higher interest rates and changing policies, mature technologies saw steady growth, increasing by 14.7% compared to the previous year. Their proven scalability and established business models make them trustworthy for governments and investors.

In contrast, emerging technologies faced significant setbacks. Investment in these sectors dropped by 23%, mainly due to high costs, unproven scalability, and limited commercial readiness. These challenges continue to slow their progress and hinder their potential to scale effectively

clean energy economy
Source: Bloomberg

China Leads the Energy Investment Race

In 2024, mainland China emerged as the top market for energy transition investment, contributing $818 billion—a 20% rise from the previous year. This growth accounted for two-thirds of the global increase, with sectors like renewables, energy storage, nuclear, EVs, and power grids seeing robust development. China’s total investment surpassed the combined contributions of the US, EU, and UK.

Notably, China’s energy investment now equals 4.5% of its GDP, outpacing other nations like the EU and the US. While the US remains the second-largest market with $338 billion, Germany took third place, investing $109 billion in clean energy.

Other players like India and Canada also contributed to the global growth story, increasing investments by 13% and 19%, respectively.

china clean energy investment

2035 Forecast: A 3.6X Surge in Clean Energy Spending

To conclude Bloomberg came up with an investment forecast for 2030. The report says clean energy spending is set to rise sharply after 2030.

  • Between 2031 and 2035, annual investments are projected to reach $7.6 trillion—3.6 times higher than 2024 levels.
  • This marks a 37% increase compared to the annual spending expected between 2025 and 2030.

Electrified transport, including EVs and charging infrastructure, will continue to dominate investments during this period. As demand for clean mobility grows, funding for these technologies is likely to accelerate further, supporting the transition to a low-carbon future.

clean energy investment

Thus, this steep rise in renewable energy spending after 2030 highlights the necessity for quick action. However, this year with Trump taking over, his stance on clean energy investment has been mixed. He has continued to promote traditional energy sources over clean energy, aligning with his “America First” agenda.

For 2025, the world is yet to get a clear picture of trade tariffs and clean energy funding with shifting political priorities and global economic uncertainties.

The post Clean Energy Investment Hits $2.1 Trillion: A Step Closer to Net Zero or a Missed Mark? appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com