Connect with us

Published

on

Nearly 15 years after journalist David Owen and I tangled — and then united — over Jevons Paradox, the New York Times today published a guest essay on that subject by a Murdoch-employed London journalist. David and I went deeper and did better, as you’ll see in a moment.

Jevons Paradox denotes the tendency of economies to increase, not decrease, their use of something as they learn how to use that thing more efficiently. Its 19th-century archetype, observed by Britisher William Stanley Jevons, was that “as steam engines became ever more efficient, Britain’s appetite for coal [to power them] increased rather than decreased,” as Sky News editor Ed Conway put it today, in The Paradox Holding Back the Clean Energy Revolution. Why? Because the “rebound” in use of steam as its manufacture grew cheaper more than offset the direct contraction in use from the increased efficiency.

Illustration by Joost Swarte for “The Efficiency Dilemma,” in the New Yorker magazine’s Dec. 20, 2010 print edition (Dec. 12 on line).

Where does David Owen come in? In October 2009 he published an op-ed in the Wall Street Journal claiming that congestion pricing could never cure traffic congestion, on account of the bounceback in car traffic due to lesser congestion. (Funnily enough, the Journal never runs opinion pieces maintaining that induced demand prevents highway expansions from “solving” road congestion.) My subsequent rebuttal in Streetsblog, Paradox, Schmaradox, Congestion Pricing Works, changed David’s mind. The disincentive of the congestion toll, he told me, could probably stave off enough of the rebound in driving to allow congestion pricing to fulfill its promise of curbing gridlock.

A year later, when David revisited Jevons Paradox in a full-blown New Yorker magazine narrative, The Efficiency Dilemma, he made sure to point to “capping emissions or putting a price on carbon or increasing energy taxes” as potential ways out. I was thrilled. and I published a post in Grist riffing on “The Efficiency Dilemma.” I’ve pasted it below. I hope to comment on Conway’s NY Times essay in a future post soon.

If efficiency hasn’t cut energy use, then what?

By Charles Komanoff, reprinted from Grist, Dec. 16, 2010.

One of the most penetrating critiques of energy-efficiency dogma you’ll ever read is in this week’s New Yorker (yes, the New Yorker). “The efficiency dilemma,” by David Owen, has this provocative subtitle: “If our machines use less energy, will we just use them more?” Owen’s answer is a resounding, iconoclastic, and probably correct Yes.

Owen’s thesis is that as a society becomes more energy efficient, it becomes downright inefficient not to use more. The pursuit of efficiency is smart for individuals and businesses but a dead end for energy and climate policy.

This idea isn’t wholly original. It’s known as the Jevons paradox, and it has a 150-year history of provoking bursts of discussion before being repressed from social consciousness. What Owen adds to the thread is considerable, however: a fine narrative arc; the conceptual feat of elevating the paradox from the micro level, where it is rebuttable, to the macro, where it is more robust; a compelling case study; and the courage to take on energy-efficiency guru Amory Lovins. Best of all, Owen offers a way out: raising fuel prices via energy taxes.

Thirty-five years ago, when the energy industry first ridiculed efficiency as a return ticket to the Dark Ages, it was met with a torrent of smart ripostes like the Ford Foundation’s landmark “A Time to Choose” report — a well-thumbed copy of which adorns my bookshelf. Since then, the cause of energy efficiency has rung up one triumph after another: refrigerators have tripled in thermodynamic efficiency, energy-guzzling incandescent bulbs have been booted out of commercial buildings, and developers of trophy properties compete to rack up LEED points denoting low-energy design and operation.

Yet it’s difficult to see that these achievements have had any effect on slowing the growth in energy use. U.S. electricity consumption in 2008 was double that of 1975, and overall energy consumption was up by 38 percent. True, during this time U.S. population grew by 40 percent, but we also outsourced much of our manufacturing to Asia. In any case, efficiency, the assertedly immense resource that lay untapped in U.S. basements, garages, and offices, was supposed to slash per capita energy use, not just keep it from rising. Why hasn’t it? And what does that say for energy and climate policy?

A short form of the Jevons paradox, and a good entry point for discussing it, is the “rebound effect” — the tendency to employ more of something when efficiency has effectively cut its cost. The rebound effect is a staple of transportation analysis, in two separate forms. One is the rebound in gallons of gas consumed when fuel-efficiency standards have reduced the fuel cost to drive a mile. The other is the rebound from the reduction in car trips after imposition of a road toll, now that the drop in traffic has made it possible to cover the same ground in less time.

Rebound effect one turns out to be small. As UC-Irvine economics professor Ken Small has shown, no more than 20 percent of the gasoline savings from improved engine efficiency have been lost to the tendency to drive more miles — and much less in the short term. Rebound effect two is more significant and becoming more so, as time increasingly trumps money in the decision-making of drivers, at least better-off ones.

Rebound effects, then, vary in magnitude from one sector to another. They can be tricky to analyze, as Owen unwittingly demonstrated in an ill-considered 2009 Wall Street Journal op-ed criticizing congestion pricing, “How traffic jams help the environment.” He wrote:

If reducing [congestion via a toll] merely makes life easier for those who drive, then the improved traffic flow can actually increase the environmental damage done by cars, by raising overall traffic volume, encouraging sprawl and long car commutes.

Not so, as I wrote in “Paradox, schmaradox. Congestion pricing works”:

When the reduction in traffic is caused by a congestion charge, life is not just easier for those who continue driving but more costly as well. Yes, there’s a seesaw between price effects and time effects, but setting the congestion price at the right point will rebalance the system toward less driving, without harming the city’s economy.

Rebound effects from more fuel-efficient vehicles, as depicted in “Energy sufficiency and rebound effects,” a 2018 concept paper by Steve Sorrell, Univ. of Sussex, and Birgitta Gabersleben & Angela Druckman, Univ. of Surrey, UK.

More importantly, as Owen points out in his New Yorker piece, a narrow “bottom up” view — one that considers people’s decision-making in isolated realms of activity one-by-one — tends to miss broader rebound effects. On the face of it, doubling the efficiency of clothes washers and dryers shouldn’t cause the amount of laundering to rise more than slightly. But consider: 30 years ago, an urban family of four would have used the washer-dryer in the basement or at the laundromat, forcing it to “conserve” drying to save not just quarters but time traipsing back and forth. Since then, however, efficiency gains have enabled manufacturers to make washer-dryers in apartment sizes. We own one, and find ourselves using it for “spot” situations — emergencies that aren’t really emergencies, small loads for the item we “need” for tomorrow — that add more than a little to our total usage. And who’s to say that the advent of cheap and rapid laundering hasn’t contributed to the long-term rise in fashion-consumption, with all it implies for increased energy use through more manufacturing, freight hauling, retailing, and advertising?

Owen offers his own big example. Interestingly, it’s not computers or other electronic devices. It’s cooling. In an entertaining and all-too-brief romp through a half-century of changing mores, he traces the evolution of refrigeration and its “fraternal twin,” air conditioning, from rare, seldom-used luxuries then, to ubiquitous, always-on devices today:

My parents’ [first fridge] had a tiny, uninsulated freezer compartment, which seldom contained much more than a few aluminum ice trays and a burrow-like mantle of frost … The recently remodeled kitchen of a friend of mine contains an enormous side-by-side refrigerator, an enormous side-by-side freezer, and a drawer-like under-counter mini-fridge for beverages. And the trend has not been confined to households. As the ability to efficiently and inexpensively chill things has grown, so have opportunities to buy chilled things — a potent positive-feedback loop. Gas stations now often have almost as much refrigerated shelf space as the grocery stores of my early childhood; even mediocre hotel rooms usually come with their own small fridge (which, typically, either is empty or — if it’s a minibar — contains mainly things that don’t need to be kept cold), in addition to an icemaker and a refrigerated vending machine down the hall.

Air conditioning has a similar arc, ending with Owen’s observation that “access to cooled air is self-reinforcing: to someone who works in an air-conditioned office, an un-air-conditioned house quickly becomes intolerable, and vice versa.”

If Owen has a summation, it’s this:

All such increases in energy-consuming activity [driven by increased efficiency] can be considered manifestations of the Jevons paradox. Teasing out the precise contribution of a particular efficiency improvement isn’t just difficult, however; it may be impossible, because the endlessly ramifying network of interconnections is too complex to yield readily to empirical, mathematics-based analysis. [Emphasis mine.]

Defenders of efficiency will call “endlessly ramifying network” a cop-out. I’d say the burden is on them to prove otherwise. Based on the aggregate energy data mentioned earlier, efficiency advocates have been winning the micro battles but losing the macro war. Through engineering brilliance and concerted political and regulatory advocacy, we have increased energy-efficiency in the small while the society around us has grown monstrously energy-inefficient and cancelled out those gains. Two steps forward, two steps back.

I wrote something roughly similar five years ago in a broadside against my old colleague, Amory Lovins:

[T]hough Amory has been evangelizing “the soft path” for thirty years, his handful of glittering successes have only evoked limited emulation. Why? Because after the price shocks of the 1970s, energy became, and is still, too darn cheap. It’s a law of nature, I’d say, or at least of Economics 101: inexpensive anything will never be conserved. So long as energy is cheap, Amory’s magnificent exceptions will remain just that. Thousands of highly-focused advocacy groups will break their hearts trying to fix the thousands of ingrained practices that add up to energy over-consumption, from tax-deductible mortgages and always-on electronics to anti-solar zoning codes and un-bikeable streets. And all the while, new ways to use energy will arise, overwhelming whatever hard-won reductions these Sisyphean efforts achieve.

I wrote that a day or two after inviting Lovins to endorse putting carbon or other fuel taxes front-and-center in energy advocacy. He declined, insisting that “technical efficiency” could be increased many-fold without taxing energy to raise its price. Of course it has, can, and will. But is technical efficiency enough? Owen asks us to consider whether a strategy centered on technical and regulatory measures to boost energy efficiency may be inherently unsuited for the herculean task of keeping coal and other fossil fuels safely locked in the ground.

I said earlier that Owen offers an escape from the Jevons paradox, and he does: “capping emissions or putting a price on carbon or increasing energy taxes.” It’s hardly a clarion call, and it’s not the straight carbon taxers’ line. But it’s a lifeline.

The veteran English economist Len Brookes told Owen:

When we talk about increasing energy efficiency, what we’re really talking about is increasing the productivity of energy. And, if you increase the productivity of anything, you have the effect of reducing its implicit price, because you get more return for the same money — which means the demand goes up.

The antidote to the Jevon paradox, then, is energy taxes. We can thank Owen not only for raising a critical, central question about energy efficiency, with potential ramifications for energy and climate policy, but for giving us a brief — an eloquent and powerful one — for a carbon tax.

Author’s present-day (Feb. 22, 2024) note: I overdid it somewhat in belittling energy efficiency’s impacts on U.S. energy use in that 2010 Grist post. Indeed, in posts here in 2016 and again in 2020 I quantified and enthused over improved EE’s role in stabilizing electricity demand and slashing that sector’s carbon emissions.

Carbon Footprint

Microsoft (MSFT) Signs Solar Deal with Zelestra to Power Data Centers in Spain, Supporting Community Projects

Published

on

Microsoft Signs Solar Deal with Zelestra to Power Data Centers in Spain, Supporting Community Projects

Microsoft (MSFT) has signed a long-term Power Purchase Agreement (PPA) with Zelestra for 95.7 MWAC of solar power. The energy will come from two new solar farms in Aragón, Spain — Escatrón II and Fuendetodos II, both under construction. This clean energy will help power Microsoft’s data centers and operations in the region. It also supports Microsoft’s wider climate goals.

A Solar Deal That Shines Beyond Power

Beyond simply buying solar power, Microsoft is tying this deal to benefits for the local community. The non-profit ECODES will run a “Community Fund” financed by this PPA. ECODES plans to use this fund to support sustainability projects in Aragón. They will invest in local infrastructure, social inclusion, and environmental education.

Zelestra calls its strategy “3 Es”: Education, Energy, and Environment. Microsoft sees this as part of its “Datacenter Community Pledge,” which aims to ensure its operations help local areas as well as reduce its carbon footprint.

Why Microsoft’s 95.7 MW Bet Matters

This solar agreement matters for several reasons:

  1. Reliable clean energy: The 95.7 MW solar supply gives Microsoft a stable source of renewable power.
  2. Social benefits: ECODES will channel money into projects that help local people and ecosystems.
  3. Long-term local commitment: Zelestra intends to stay in Aragón and work with communities for years.

This structure shows how a big company can use a clean energy deal not just for itself, but for shared community value.

Spain’s Solar Boom and Zelestra’s Expanding Footprint

Solar power in Spain is booming. In the last few years, the country has added thousands of megawatts of solar capacity. According to Informa’s DBK report, solar energy grew by 6,000 MW in just one year, reaching 32,350 MW by 2024.

Red Eléctrica (the Spanish grid operator) data shows that by early 2025, solar PV installed capacity passed 32,000 MW, making solar the largest source of power capacity in Spain.

This growth reflects a major shift in Spain’s energy mix. In 2024, solar PV generated a record 44,520 GWh of electricity, about 17% of the country’s total electricity output.

At the same time, renewables now make up around 66% of Spain’s total power generation capacity. These numbers show how central solar power has become to Spain’s energy transition.

The outlook is even more ambitious. According to GlobalData, Spain’s solar capacity could reach 152.8 GW by 2035, driven by strong policy support and growing investor confidence. To fuel this, many new projects are already in the permitting stage.

Spain renewable power market 2035

In 2025 alone, more than 5 GW of solar projects were submitted for environmental approval. Castilla‑La Mancha is a major one of those major regions, and it stands out in Zelestra’s portfolio.

Zelestra is a major player in this growth. In 2025, it secured €146.6 million to build six solar plants in Castilla‑La Mancha, totaling 237 MWdc. These projects will create jobs, generate around 467 GWh of clean energy per year, and avoid over 84,000 tons of CO₂ emissions annually.

Zelestra is also expanding its corporate partnerships, providing renewable electricity for companies like Microsoft and Graphic Packaging International. Its portfolio in Spain exceeds 6 GW, showing its strong commitment to the country’s clean energy transition and its role as a key developer of large-scale solar projects.

Inside Microsoft’s Push Toward Carbon Negativity

Microsoft has set strong climate goals. In 2020, it announced its plans to be carbon negative by 2030. That means by then, it wants to remove more carbon from the atmosphere than it emits.

To reach this, the tech giant is doing several things:

  • It has contracted 34 GW of new renewable energy across 24 countries.
  • It aims to match 100% of its electricity use with zero‑carbon power by 2025.
  • It invests in carbon removal. In fiscal year 2024, Microsoft signed contracts for nearly 22 million metric tons of carbon removal.
  • It uses a $1 billion Climate Innovation Fund to support new technologies.

Progress and Challenges in Emissions

Microsoft has made real progress, but it also faces big challenges. Its Scope 1 and Scope 2 emissions (those from its own operations and electricity use) dropped 29.9% compared to 2020.

Microsoft carbon emissions
Source: Microsoft

But its total emissions (including its supply chain, or “Scope 3”) rose by 23–26% since 2020. This increase comes mainly from its rapid growth in data centers and cloud services.

Because it makes a lot of servers, chips, and hardware, Microsoft’s construction and supply chain also generate emissions. To cut those, it is working with its suppliers. By 2030, Microsoft plans to require high-volume suppliers to use 100% carbon‑free electricity.

Microsoft’s clean energy capacity has grown steadily since 2013, starting with wind projects in the U.S. By 2022, capacity reached 900 MW with wind and solar projects in Europe and the U.S.

Microsoft Clean Energy Contracts (Capacity, MW)
Notes: Clean energy deals include solar and wind projects

In 2024, Microsoft signed the largest corporate clean energy deal for 10.5 GW with Brookfield Renewable, delivering by 2030. This reflects Microsoft’s goal to power all operations with 100% renewable energy by 2030, underscoring its leadership in global sustainability efforts.​

Carbon Removal and Long-Term Risks

Microsoft is not just cutting emissions, it is also removing carbon. It invests in two big types of removal:

  • Nature-based removal: Microsoft has a deal with Chestnut Carbon to buy over 7 million tons of forest-based carbon credits.
  • Advanced removal: Microsoft supports projects like bioenergy with carbon capture and storage (BECCS). It recently backed a project in Louisiana that could capture 6.75 million tons of CO₂ over 15 years. 

Still, some experts warn that Microsoft’s climate strategy lacks targets beyond 2030. That could challenge its long-term impact.

SEE MORE on Microsoft: 

How the Solar Deal Fits into Microsoft’s Strategy?

The 95.7 MW deal in Spain ties directly into Microsoft’s overall carbon-negative goal. Here’s how it fits:

  • It adds zero-carbon electricity to Microsoft’s grid mix.
  • It supports Microsoft’s plan to match all its power use with clean energy.
  • The deal’s community fund reinforces Microsoft’s aim to pair climate action with social value.
  • It strengthens Microsoft’s global clean energy portfolio.

This helps Microsoft reduce its operational emissions (Scope 1 & 2) and supports its broader mission to remove carbon.

What’s Next for Microsoft, Zelestra, and Local Communities?

If all goes well, the two solar farms in Aragón will come online and deliver power to Microsoft for many years. The ECODES fund should start giving out grants to local groups, helping build greener projects in the community.

The tech giant must also keep pushing its carbon removal work and supplier engagement. It needs to make sure its long-term investments bring real, measurable climate impact.

Zelestra, for its part, will prove whether it can deliver reliable solar and meaningful social impact. If the model works, more companies may use similar “clean energy + community” contracts.

The agreement is more than just about cutting emissions — it’s also about helping local communities. At the same time, Microsoft’s push to be carbon negative by 2030 is ambitious and complex. It involves clean power, carbon removal, and changes in its entire supply chain.

This Spanish solar deal adds a new piece to Microsoft’s climate puzzle. It strengthens its clean energy supply and shows how corporate climate goals can benefit more than just the bottom line.

The post Microsoft (MSFT) Signs Solar Deal with Zelestra to Power Data Centers in Spain, Supporting Community Projects appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Legal challenges in carbon offsetting: What recent lawsuits teach us

Published

on

Over the past two years, the world of carbon offsetting has entered a new era—one defined by legal scrutiny, public demand for accuracy, and a deeper understanding of how complex carbon accounting truly is. This shift reflects a growing expectation that environmental claims must be both scientifically credible and communicated with absolute precision.

Continue Reading

Carbon Footprint

Constellation Secures $1B DOE Loan to Restart Crane Clean Energy Center and Boost America’s Nuclear Energy Future

Published

on

CLEAN energy investment U.S. nuclear

U.S. Secretary of Energy Chris Wright announced on November 18 that the Department of Energy’s Loan Programs Office has finalized a $1 billion loan to help lower energy costs and restart a Pennsylvania nuclear power plant. The funding will support Constellation Energy Generation, LLC in financing the Crane Clean Energy Center, an 835 MW facility located on the Susquehanna River in Londonderry Township, Pennsylvania. This loan marks a major step toward restoring reliable, carbon-free power to the region.

Energy Secretary Wright highlighted further,

“Thanks to President Trump’s bold leadership and the Working Families Tax Cut, the United States is taking unprecedented steps to lower energy costs and bring about the next American nuclear renaissance. Constellation’s restart of a nuclear power plant in Pennsylvania will provide affordable, reliable, and secure energy to Americans across the Mid-Atlantic region. It will also help ensure America has the energy it needs to grow its domestic manufacturing base and win the AI race.”

Constellation (Nasdaq: CEG) is the first company to receive a simultaneous conditional loan commitment and financial close from the DOE Loan Programs Office. Its strong finances and credit rating allowed the process to move quickly. The loan, provided through the Energy Dominance Financing Program, will lower financing costs and attract private investment to restart the plant. In addition, DOE noted the project will help the U.S. stay competitive in the global AI and digital economy, which is driving higher electricity demand.

Crane Clean Energy Center: Returning 835 MW of Carbon-Free Power

The Crane Clean Energy Center is an 835-megawatt nuclear plant on the Susquehanna River. Previously known as Three Mile Island Unit 1, it has a long and historic legacy. In March 1979, Three Mile Island Unit 2 suffered a partial meltdown and has remained in monitored storage ever since. Unit 1, however, continued operating safely for four decades before being shut down in September 2019 due to market conditions rather than safety concerns.

In September 2024, Constellation signed a 20-year power purchase agreement with Microsoft, which allows the tech giant to buy the carbon-free electricity generated by the restarted plant. Following the agreement, Constellation rebranded the facility as the Crane Clean Energy Center. As said before, once operational, the plant will provide 835 MW of nuclear energy.

DOE Loan Accelerates the Restart

Constellation (Nasdaq: CEG) is the first company to receive a simultaneous conditional loan commitment and financial close from the DOE Loan Programs Office. Its strong finances and credit rating allowed the process to move quickly. The loan, provided through the Energy Dominance Financing Program, will lower financing costs and attract private investment to restart the plant. In addition, DOE noted the project will help the U.S. stay competitive in the global AI and digital economy, which is driving higher electricity demand.

DOE stated that the Crane loan aligns with President Trump’s Executive Order on Reinvigorating the Nuclear Industrial Base. The project is the first under this administration to receive a simultaneous conditional commitment and financial close.

Because the reactor was never fully decommissioned, restarting it is faster and more cost-effective than building a new plant. The loan will fund equipment inspections, system upgrades, workforce training, and regulatory compliance. Once approved by the Nuclear Regulatory Commission, the plant will supply enough electricity to power about 800,000 homes across the PJM Interconnection region. It will help lower electricity costs, strengthen grid reliability, and create hundreds of jobs.

clean energy investment U.S. nuclear

READ MORE:

Pennsylvania Leads in Clean Energy and AI Power

Senator Dave McCormick praised the DOE loan, saying Pennsylvania is leading the nation in energy independence and AI innovation. He highlighted that the restart will deliver more than 800 MW of carbon-free electricity and create 3,400 direct and indirect jobs.

McCormick also noted Constellation’s ongoing investments across the state, including commitments announced at the Pennsylvania Energy and Innovation Summit. The restart comes amid unprecedented electricity demand from AI, cloud computing, and expanding data centers.

A Goldman Sachs report predicts that AI could increase data-center power demand by 160 percent. AI queries, like those used by tools such as ChatGPT, require nearly ten times more electricity than a standard Google search. Nuclear power is vital to meet this growing demand reliably.

AI energy demand

Extending Nuclear Plant Life: Constellation’s Strategy for Reliable Power

Constellation has invested in local communities by committing over $1 million in charitable contributions over five years. In 2025 alone, the company donated $200,000 to support nonprofits, workforce programs, and local initiatives.

Significantly, restarting Crane is part of Constellation’s larger multi-billion-dollar plan to extend the life of America’s nuclear fleet, increase output, and ensure reliable power for decades.

The Crane Clean Energy Center is expected to deliver significant economic benefits to Pennsylvania. An analysis by the Pennsylvania Building and Construction Trades Council projected that the restart would create thousands of direct and indirect jobs. It could add more than $16 billion to the state’s GDP and generate over $3 billion in state and federal tax revenue.

The plant is already more than 80 percent staffed, with over 500 employees, including engineers, mechanics, technicians, and licensed operators. Regulatory reviews and technical inspections remain on schedule.

Joe Dominguez, president and CEO of Constellation, said:

“DOE’s quick action and leadership is another huge step towards bringing hundreds of megawatts of reliable nuclear power onto the grid at this critical moment. Under the Trump administration, the FERC and DOE have made it possible for us to vastly expedite this restart without compromising quality or safety. It’s a great example of how America first energy policies create jobs, growth and opportunities and make the grid more reliable. Utilities and grid operators are moving too slowly and need to make regulatory changes that will allow our nation to unlock its abundant energy potential. Constellation and nuclear energy are helping to lead the way and we are thankful to President Trump and Secretary Wright for putting the ‘energy’ back into DOE.”

Nuclear Power for America’s Clean Energy Future

The surge in AI, electrification, and cloud computing has made nuclear energy more critical than ever. Small modular reactors and advanced technologies are gaining interest from utilities and data-center developers.

The U.S. produces about 30 percent of the world’s nuclear electricity. Ninety-four reactors supply steady, clean power to millions of homes and industries nationwide. According to the World Nuclear Association, U.S. reactors generated 779 terawatt-hours in 2023, accounting for 19 percent of the nation’s total electricity output.

The administration aims to quadruple U.S. nuclear capacity to 400 gigawatts by 2050. The International Energy Agency projects 35 GW of new capacity by 2035 and 200 GW by 2050, nearly triple current levels. Restarting Crane contributes to this goal while providing reliable baseload power, supporting AI and digital growth, and boosting the economy.

Electricity generation for data centres by fuel in the United States, Base Case, 2020-2035

US data center nuclear energy

The Crane Clean Energy Center restart is a key step toward clean, reliable energy. It shows how nuclear power can meet rising electricity needs, support innovation, and strengthen local economies.

The post Constellation Secures $1B DOE Loan to Restart Crane Clean Energy Center and Boost America’s Nuclear Energy Future appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com