“What species are there?”, “Where are they in the water column and why?”, “Who eats whom?” – These and other seemingly simple questions remain largely unanswered for the deep sea, the largest and least explored habitat for life on Earth. At the same time, climate change and increasing human exploitation are putting pressure on this unique system. In this situation, better scientific information to answer the “simple questions” and thus a better understanding of ecosystem functioning is of fundamental scientific interest, but also highly relevant to guide conservation efforts.
On 9 February, our cruise MSM126 “Jellyweb” Madeira left the port of Funchal, Madeira, Portugal, with 22 scientists from seven institutes in five nations and 24 permanent crew on board. Our mission: to improve the understanding of the biodiversity and food web structure of the deep-sea systems around Madeira down to depths of 3000 m. We are particularly interested in the role of gelatinous species such as jellyfish, hydromedusae, salps or chaetognaths (the “jelly web”), which can occur in high diversity and biomass, but are rarely caught intact in nets due to their fragile bodies and have therefore often been neglected in marine research.
A salp (Soestia zonaria), part of the gelatinous fauna in which we are particularly interested. Photo: Karen Osborn
Until the end of our cruise on 4 March in Las Palmas, Gran Canaria, we want to introduce you to our scientific questions, the equipment and approaches we use to address them, and share impressions of the deep sea and its amazing inhabitants.
Ultimately, we hope to convey some of the magic of the unique deep-sea world that we are privileged to witness every day on this cruise – a wonder worth sharing, worth our scientific attention and, above all, worth protecting.
All the best from aboard the research vessel MARIA S. MERIAN,
Jan (Chief Scientist MSM126, on behalf of all participants)
Cruise MSM126 “Jellyweb Madeira” now blogging from the Eastern Central Atlantic Ocean!
Ocean Acidification
All About Arrow Crabs
Along a bustling coral reef lit by sunlight, one can find an array of amazing creatures from surgeonfish to green sea turtles. After dark, these reefs are just as vibrant and a little spooky as some of our nocturnal underwater friends come out to roam the sea. These night shift species, while wonderful and majestic, can seem straight out of outer space or a horror movie–one such creature of the night, the arrow crab.
A warning before we proceed: Arachnophobes beware, one look at these spider-like crabs will send a shiver down your spine.
Love ocean content?
Enter your email and never miss an update
Arrow crabs are fascinating triangular-shaped crabs with 10 long legs that can measure at almost three times the size of their bodies which measure just 2.5 inches. These creepy crawlies are yellowish-red in color and are equipped with stunning bright blue or violet claws. They have very pointed heads with eyes on long stalks that protrude from their bodies With their small bodies and long legs, these crabs and their spider-esque qualities are sights to be seen.
During the day, these crabs prefer to hide in rocky areas, along coral reefs and in shipwrecks on the seafloor. Those aren’t all of their hiding spots, however; arrow crabs have also been known to hide in tube sponges, under anemones and in the spines of sea urchins. These top-notch hiding skills help these crabs evade predators such as octopuses, groupers and pufferfish. Arrow crabs have also been known to participate in some underwater arts and crafts as they camouflage their bodies with bits of algae to hide from their predators.
As predators and scavengers, arrow crabs spend most of their prime nighttime hours searching the reefs for their next meal. Typically, dinner for these crabs include algae, invertebrates, and many kinds of worms including bristle and duster worms. Arrow crabs are quite fast, which allows them to quickly grab their prey and scurry away from competitors. Small but mighty, arrow crabs have been known to be territorial and aggressive towards other sea life when threatened.
During mating season, a female arrow crab will carry her eggs under her abdomen until it’s time to hatch. Once hatched, these new creatures are called zoea [zoh-ee-uh] and look more like a bubble than a crab. Their transparent bodies float to the surface and feed on plankton, and they live along coral reefs once they reach adulthood.
Our ocean after dark is otherworldly. While the daytime shines the spotlight on colorful species in coral reefs, the night brings out some mysterious and oddly shaped creatures. Naturally, we ocean admirers love both versions of our wonderful ocean. Arrow crabs and their strikingly strange resemblance to daddy long legs are just one example of our world’s diverse sea creatures. There is still so much to discover and explore under the sea, but we must act now to protect the wonders of the ocean before more damage is done.
The post All About Arrow Crabs appeared first on Ocean Conservancy.
Ocean Acidification
A glimpse into the future of ocean exploration, inspired by the technology used on the RV Meteor M202 oceanographic expedition
For a marine biologist like me, it’s always a pleasure to take part in a multidisciplinary scientific campaign like M202 on a modern oceanographic vessel like the RV Meteor. In addition to the excitement of exploring the unknown that such a mission provides, the contact with researchers from different backgrounds and interests allows us to learn, open new scientific horizons and possibly establish fruitful future partnerships.
As in other areas of knowledge, the study of the marine environment is evolving at an unprecedented rate. The combination of environmental sensors with acoustic, optical and omic prospecting technologies is transforming the way we study the ocean, in particular its biodiversity and the dynamic biophysical and ecological coupling. This revolution is only possible because of the current capacity to store, manage and analyse the enormous amount of data (big data) generated by a scientific campaign like this one.
Much of the equipment used in this campaign is fitted with sophisticated acoustic probes operating at different frequencies that map and discriminate the echoes of organisms living in the water column and near the seafloor. Various prototypes, cabled, autonomous, drifting or moored to the seafloor, use high-resolution photographic and video cameras to capture images of planktonic particles or macro- and mega-organisms living in these marine environments. The water samples collected (by the CTD) are used to barcode the DNA from skin cells, scales or other tissues that marine organisms naturally shed into the water (called environmental DNA or eDNA), making it possible to identify the species that live in or have passed through that environment. The integrated management and analysis of these gigantic databases will later be carried out by powerful computers and artificial intelligence algorithms.
However, in order to interpret echoes, recognise particles detected by optical platforms, identify the presence of species based on eDNA sequences lost in the water, and design useful artificial intelligence algorithms, we need to build robust reference catalogues. Recording the density and behaviour of organisms, their shape, size and variability, and the genomes of known species, is necessary to teach machines (machine learning) to correctly interpret the data we feed them.For this reason, it is still necessary to use traditional biological sampling techniques, such as pelagic trawls targeting plankton and micronekton, which were used in this campaign.
During the M202 campaign, my colleagues Thomas Beloud, Zuzana Musilova and I worked hard to ensure that all mesopelagic fish sampled would contribute to enhancing the understanding of the ecosystem under study.
There is a growing sense of urgency to explore the ocean. This is driven by the need to provide robust knowledge to support the best-informed policies for the sustainable management of human activities at sea, in a changing planet. I also believe that this is the motivation for most of us who participate in this M202 campaign.
Perhaps in a few decades’ time we will have almost decoded the ocean, and the current maxim that “we know more about the surface of the Moon and Mars than we do about the interior of the ocean” will be history.
By Filipe M Porteiro
Ocean Acidification
Ein Blick in die Zukunft der Meeresforschung
Für einen Meeresbiologen wie mich ist es immer eine Freude, an einer multidisziplinären wissenschaftlichen Kampagne wie M202 auf einem modernen ozeanografischen Schiff wie der FS Meteor teilzunehmen. Neben dem Reiz, das Unbekannte zu erforschen, den solch eine Reise mit sich bringt, können wir von teilnehmenden ForscherInnen mit unterschiedlichen Hintergründen und Interessen lernen, neue wissenschaftliche Horizonte erschließen und möglicherweise künftige Partnerschaften eingehen.
Wie in anderen Wissensbereichen entwickelt sich auch die Erforschung der Meere in einem noch nie dagewesenen Tempo weiter. Die Kombination von Umweltsensoren mit akustischen, optischen und genetischen Technologien verändert die Art und Weise, wie wir die Ozeane erforschen, insbesondere ihre Artenvielfalt und die Wechselwirkungen zwischen biologischen, physikalischen und ökologischen. Diese Revolution ist nur möglich, weil wir heute in der Lage sind, die enormen Datenmengen (Big Data) zu speichern, zu verwalten und zu analysieren, die bei einer wissenschaftlichen Expedition wie dieser anfallen.
Ein Großteil der in dieser Expedition verwendeten Ausrüstung ist mit hochentwickelten akustischen Sonden ausgestattet, die mit verschiedenen Frequenzen arbeiten und die Echos der in der Wassersäule und in der Nähe des Meeresbodens lebenden Organismen erfassen und unterscheiden kann.
Verschiedene Geräte, mit dem Schiff durch ein Kabel verbunden, autonom, treibend oder am Meeresboden verankert, verwenden hochauflösende Foto- und Videokameras, um Bilder von Planktonpartikeln oder Makro- und Megaorganismen aufzunehmen. Die (mit der CTD) entnommenen Wasserproben werden verwendet, um die DNA von Hautzellen, Schuppen oder anderen Geweben, die Meeresorganismen auf natürliche Weise ins Wasser abgeben, mit einem molekularen Barcode zu versehen (so genannte Umwelt-DNA oder eDNA), der es ermöglicht, die Arten zu identifizieren, die in dieser Umgebung leben oder sie durchquert haben. Die Verwaltung und Analyse dieser riesigen Datenbanken werden später von leistungsstarken Computern und teilweise auch von KI übernommen.
Um akustische Signale zu interpretieren, von optischen Plattformen erfasste Partikel zu erkennen, das Vorhandensein von Arten anhand von im Wasser verlorenen eDNA-Sequenzen zu identifizieren und nützliche Algorithmen für KI zu entwickeln, müssen wir robuste Referenzkataloge erstellen. Die Erfassung der Dichte und des Verhaltens von Organismen, ihrer Form, Größe und Variabilität sowie der Genome bekannter Arten ist notwendig, um Maschinen (maschinelles Lernen) zu lehren, die von uns gelieferten Daten richtig zu interpretieren. Aus diesem Grund ist es nach wie vor notwendig, traditionelle biologische Probenahmetechniken einzusetzen, wie z. B. pelagische Schleppnetze, die auf Plankton und Mikronekton abzielen und die auf dieser Expedition verwendet wurden.
Während der M202-Kampagne haben meine Kollegen Thomas Beloud, Zuzana Musilova und ich hart gearbeitet, um sicherzustellen, dass alle beprobten mesopelagischen Fische dazu beitragen, das Verständnis des untersuchten Ökosystems zu verbessern.
Es wird immer dringender, die Ozeane zu erforschen. Dies ist wichtig, um mehr Wissen zu sammeln und so die besten Entscheidungen für den Schutz und die nachhaltige Nutzung der Meere zu treffen, während sich unsere Welt verändert. Ich glaube auch, dass dies die Motivation für die meisten von uns ist, die an der Expedition M202 teilnehmen.
Vielleicht werden wir in einigen Jahrzehnten den Ozean fast entschlüsselt haben, und die derzeitige Maxime, dass “wir mehr über die Oberfläche des Mondes und des Mars wissen als über das Innere des Ozeans”, wird der Vergangenheit angehören.
Filipe M Porteiro
-
Climate Change10 months ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change10 months ago
Clouds now contains plastic, contaminating ‘everything we eat and drink’
-
Climate Change10 months ago
Why airlines are perfect targets for anti-greenwashing legal action
-
Climate Change Videos9 months ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Climate Change10 months ago
Farmers turn to tech as bees struggle to pollinate
-
Greenhouse Gases10 months ago
How Climate Change Endangers Wildlife and Ecosystems
-
Climate Change Videos9 months ago
-
Green Living8 months ago
5 Reasons to Love Lomi + How to Use It