In the race to offset their carbon footprints, two giant companies—Shell and Microsoft—stand out as the largest carbon credit buyers in 2024, according to the Allied Offsets report. Their massive retirements reflect differing strategies and priorities, however, signaling distinct approaches to tackling carbon emissions through carbon markets.
Shell, the world’s largest fossil fuel company, and Microsoft, a technology leader, have been pivotal players in the voluntary carbon market (VCM). However, their activities reveal stark contrasts in how they approach sustainability goals and what projects they support.
Meanwhile, the broader carbon credit market in 2024 showed a growing emphasis on removals and diversification of project types.
Shell: The Emission Offset Leader
Shell retained a massive 14.5 million carbon credits in 2024, taking the top spot for the second consecutive year. This commitment is a significant part of Shell’s strategy to offset its extensive emissions.
Unlike Microsoft, which has heavily invested in carbon removal technologies, Shell’s purchases mainly target projects focused on emissions avoidance.
A large portion of Shell’s credits—9.4 million—came from forestry and land-use initiatives. These projects, focusing on protecting and managing forests to prevent the release of stored carbon, are cost-effective but also face scrutiny over integrity concerns. Interestingly, the energy giant announced plans in November last year to sell part of its nature-based carbon projects.
The company also retired 2.4 million renewable energy credits, a cheaper and more widely accepted option in the market.

Moreover, the price difference between Shell’s credits and Microsoft’s illustrates their contrasting strategies. While Shell paid an average of $4.15 per credit, it remains focused on more affordable projects, including renewable energy and forestry.
Despite criticisms over the quality of some of its projects, Shell continues to be a significant player, aligning its credit purchases with its ongoing goal of achieving net-zero emissions by 2050. To achieve that, the oil major aims to reduce emissions from its operations by 50% by 2030, using 2016 baselines.

Microsoft: A Carbon Removal Champion
In contrast, Microsoft has pursued a more aggressive approach toward carbon removal, setting itself apart with a robust commitment to investing in innovative carbon capture technologies. The company retired 5.5 million credits in 2024, a distant second to Shell. However, the type of credits the tech giant bought tells a different story.
A key focus for Microsoft has been on bioenergy with carbon capture and storage (BECCS). It is an expensive and emerging technology that is capable of delivering carbon-negative results. BECCS works by capturing the carbon dioxide released during the burning of biomass and storing it underground.
Nearly 80% of Microsoft’s 2024 carbon credits came from BECCS projects, with the largest purchase of 3.3 million credits coming from Sweden’s Stockholm Exergi. While this technology is still in its infancy, it plays a critical role in global pathways to achieving net-zero emissions.
Microsoft’s strategy, however, is not without its challenges. BECCS credits are costly, with average prices of $389 per credit—substantially higher than the costs associated with Shell’s projects.
- In 2024, Microsoft’s average credit price was $189, a significant investment considering its aim to neutralize emissions across its operations.
Despite the high costs, Microsoft’s commitment to carbon removal reflects its leadership in the tech industry’s broader sustainability agenda. The major tech company aims to be carbon-negative by 2030.

Microsoft’s strategy to focus on carbon removals seems to be on the right track. The broader carbon market trend reveals the growing interest in carbon removal credits.
Carbon Market Dynamics: Increasing Focus on Quality and Carbon Removal Credits
The VCM in 2024 has shown signs of shifting, with a significant uptick in carbon removal credits, per the report. However, overall retirement activity in the VCM plateaued, with 2024 marking the third consecutive year of minimal growth.

The decrease in market growth is not necessarily a negative development, as more buyers have shifted toward high-quality, impactful projects.
While Shell and Microsoft represent the extremes in carbon credit purchasing, other buyers are increasingly exploring removals and non-traditional carbon offset projects. Removals, such as those associated with BECCS, saw a larger share of the market, though they still constitute a small portion overall.
This shift reflects a broader trend toward supporting innovative carbon removal solutions, which can deliver long-term, lasting environmental benefits. Another report by the MSCI also reveals the same trend—demand for carbon removal credits is rising.
The market’s composition is also diversifying. Projects related to renewable energy and forestry still dominate. However, their share in total credit retirements has decreased from 80% in 2020 to 70% in 2024.
At the same time, new entrants into the market are pushing for more varied solutions, including technologies for direct air capture and carbon removal, which add complexity to an already challenging marketplace.
Challenges for Credit Buyers and the Market
One of the major challenges for buyers is the oversupply of carbon credits in the market, which continues to grow. In 2024, the number of issued but not retired credits increased again, contributing to a potential glut in available credits.
This dynamic is particularly evident in the market for older Clean Development Mechanism (CDM) credits, which have increasingly been criticized for their lack of additionality and impact.

Despite these challenges, the number of active buyers in the VCM continues to grow. In 2024, more than 6,500 companies participated in the market, a slight increase compared to previous years.
The vast majority of carbon credit buyers continue to come from the financial and energy sectors, with Microsoft representing a key player in the tech space. Even though more companies are entering the market, the rate of growth has slowed. This suggests that carbon credits are becoming a more established component of sustainability strategies.
As we move into 2025, the divergent strategies of Shell and Microsoft may serve as a model for others seeking to engage with the VCM. Shell’s focus on affordability and scale contrasts with Microsoft’s commitment to cutting-edge carbon removal technologies.
Yet, both companies are working towards a common goal—neutralizing their emissions and supporting global climate efforts.
As the market continues to evolve, these two companies are likely to remain at the forefront of shaping how businesses approach their carbon footprint and the critical role carbon credits play in the global fight against climate change.
The post Shell and Microsoft Are The Biggest Carbon Credit Buyers in 2024: What Projects Do They Support? appeared first on Carbon Credits.
Carbon Footprint
Rio Tinto and Hydro Invest $45 Million to Cut Aluminum Emissions
Aluminum is everywhere, from cars to cans, but its production is a major carbon polluter. With global aluminum demand soaring, Rio Tinto and Hydro will $45 million in carbon capture tech to cut emissions. Could this be the breakthrough the industry needs?
The Carbon Footprint of Aluminum: A Heavyweight Problem
Aluminum production accounts for about 2% of global carbon emissions. The industry emits about 1.1 billion metric tons of CO₂ per year. That’s the same as the emissions from 150 million U.S. homes.
The electrolysis process alone is responsible for 791 million metric tons. Electrolysis is the main step in aluminum smelting. It uses carbon anodes, which release CO₂ during the process. This stage accounts for around 75% of a smelter’s direct CO₂ emissions.
With transportation, construction, and packaging relying on aluminum, we must reduce its environmental impact. Many aluminum producers are now seeking ways to cut emissions and reach net-zero targets.
A $45 Million Push for Carbon Capture
To tackle this, Rio Tinto and Hydro will invest $45 million over the next five years to develop carbon capture technologies for aluminum smelting. Smelting takes up most of the total GHG emissions of aluminum production.

The partnership focuses on finding, testing, and scaling up methods to capture and store CO₂ emissions from the electrolysis process. The initiative includes:
- Testing carbon capture technologies from laboratory research to real-world applications.
- Running pilot projects at Rio Tinto’s facilities in Europe and Hydro’s sites in Norway.
- Sharing research, costs, and expertise to accelerate progress.
Why Carbon Capture Is Difficult in Aluminum Smelting
Capturing carbon in aluminum production is more challenging than in other industries like power generation. This is because CO₂ levels in aluminum smelter emissions are extremely low (only about 1% by volume). This makes conventional carbon capture methods less effective.
There are two main approaches to capturing CO₂ from aluminum smelters:
- Point source carbon capture: This technology captures emissions at the source but must be adapted for lower CO₂ concentrations.
- Direct air capture (DAC): While typically used to remove CO₂ from the atmosphere, DAC could be modified to work in aluminum smelters.
Both methods need significant development to move from the lab to full-scale commercial use. This is where Rio Tinto and Hydro’s investment plays a key role in advancing these technologies.
Racing Toward Net-Zero: Can They Pull It Off?
This partnership is part of a broader push toward decarbonizing aluminum production. Both companies have already been working on independent initiatives, including:
- ELYSIS (Rio Tinto & Alcoa): A joint venture focused on developing carbon-free aluminum smelting technology.
- HalZero (Hydro): A new smelting process that eliminates CO₂ emissions from aluminum production.
While these long-term projects aim to create zero-emission aluminum, carbon capture can help reduce emissions from existing smelters. By combining their expertise, Rio Tinto and Hydro hope to make these technologies commercially viable sooner.
The Surge in Demand for Green Aluminum
As industries transition toward sustainable materials, demand for low-carbon aluminum is rising. Companies in automotive, construction, and packaging are seeking greener alternatives to meet climate targets.
Global aluminum demand is projected to rise nearly 40% by 2030, according to CRU International’s report for the International Aluminium Institute (IAI). The industry must produce an extra 33.3 million metric tons (Mt), increasing from 86.2 Mt in 2020 to 119.5 Mt in 2030. Key drivers of this growth include transportation, construction, packaging, and the electrical sector, which will account for 75% of total demand.

China will remain the largest consumer of semi-finished aluminum products by 2030. The Asian country makes up for over 45% of the market since 2015.
As industries push for lighter, more sustainable materials, aluminum’s role in global manufacturing will expand. This emphasizes the need for efficient production and decarbonization efforts to meet the rising demand sustainably.
Regulations are also pushing aluminum producers to reduce emissions. Governments worldwide are setting stricter carbon limits and introducing carbon pricing mechanisms that penalize high-emission industries. Carbon capture for aluminum production could give Rio Tinto and Hydro a competitive edge in this evolving market.
Beyond Carbon Capture: Other Ways to Cut Emissions
Beyond carbon capture, the aluminum industry is exploring other solutions to reduce emissions and energy use:
- Recycled Aluminum: Producing aluminum from recycled materials uses 95% less energy than primary production. Expanding aluminum recycling can significantly cut industry-wide emissions.
- Inert Anodes: Traditional carbon anodes release CO₂ during electrolysis, but inert anodes could eliminate these emissions. This technology is still in development but shows great potential.
- Renewable Energy-Powered Smelters: Switching from fossil fuels to solar, wind, or hydroelectric power can drastically reduce emissions from aluminum production.
By combining these strategies with carbon capture, the industry can move closer to achieving net-zero emissions.
Rio Tinto and Hydro’s partnership marks a major step toward decarbonizing aluminum smelting. If successful, their investment could lead to groundbreaking advancements that benefit the entire sector. By working together, they are taking a critical step toward making low-carbon aluminum a reality—a move that aligns with global climate goals and industry sustainability efforts.
- READ MORE: Rio Tinto and Imperial College London Launch $150 Million Partnership to Power the Energy Transition
The post Rio Tinto and Hydro Invest $45 Million to Cut Aluminum Emissions appeared first on Carbon Credits.
Carbon Footprint
Palantir Reports Record-Breaking Q4 and Net Zero Success
Palantir Technologies Inc. (NASDAQ: PLTR) released its financial results for the fourth quarter ending December 31, 2024. The company showed strong growth in key areas. Its success mainly came from its artificial intelligence (AI) solutions, which integrate advanced technology into commercial and government sectors.
Their core work revolves around combining AI and machine learning, helping clients analyze data more efficiently and make smarter decisions. They work closely with the U.S. Department of Defense, intelligence agencies, and global allies to improve data management, strengthen decision-making processes, and enhance security. This is how it plays a vital role in both the public and private sectors.
Alexander C. Karp, Co-Founder and Chief Executive Officer of Palantir Technologies Inc. said,
“Our business results continue to astound, demonstrating our deepening position at the center of the AI revolution. Our early insights surrounding the commoditization of large language models have evolved from theory to fact. I would also like to congratulate Palantirians for their extraordinary contributions to our growth. They have earned every bit of the compensation from the delivery of their market-vesting stock appreciation rights (SARs).”
U.S. Market Fuels Palantir’s Strong Q4 Performance
Palantir’s fourth-quarter results reflected significant growth in the U.S. market.
- Total revenue reached $828 million, a 36% year-over-year increase and 14% growth from the previous quarter.
- U.S. revenue alone surged 52% compared to the prior year, hitting $558 million.
In the commercial sector, U.S. revenue climbed 64% year-over-year, reaching $214 million, while government revenue grew by 45% to $343 million. The company also set a record by closing $803 million in total contract value (TCV) for U.S. commercial deals, marking a 134% increase year-over-year.
Karp also noted,
“The demand for large language models from commercial institutions in the United States continues to be unrelenting. Every part of our organization is focused on the rollout of our Artificial Intelligence Platform (AIP), which has gone from a prototype to a product in months. And our momentum with AIP is now significantly contributing to new revenue and new customers.”
Financial Highlights in Q4
The company achieved impressive operational and financial results during the quarter which further indicated a strong performance. The key success parameters were:
- Generated $460 million in cash from operations, reflecting a healthy 56% margin. Additionally, its adjusted free cash flow climbed to $517 million, with a higher margin of 63%.
On the earnings front, Palantir reported a GAAP net income of $79 million, equivalent to $0.03 per share. When excluding one-time stock-related expenses, net income significantly increased to $165 million, or $0.07 per share. Furthermore, the company’s adjusted earnings per share (EPS) rose to $0.14, which drove its shareholder value.

Expanding Customer Base and Key Deals
Palantir added new customers at a rapid pace, with its customer base growing 43% compared to the previous year. The company closed 129 deals worth at least $1 million, 58 deals valued at $5 million or more, and 32 deals exceeding $10 million.
The company’s remaining deal value (RDV) for U.S. commercial contracts rose to $1.79 billion, nearly doubling from the prior year. These figures highlight Palantir’s growing influence across industries.
Fiscal Year 2024 Was All About Sustained Growth
Palantir delivered strong results for the full year, with total revenue reaching $2.87 billion—an impressive 29% growth compared to the previous year.
The U.S. market played a key role, contributing $1.9 billion to the total. Commercial revenue saw remarkable growth, surging 54% to $702 million, while government revenue increased 30%, reaching $1.2 billion.
Other significant revenue drivers were:
- Robust cash flow that generated $1.15 billion from operations with a solid 40% margin.
- It reported an annual net income of $462 million. It reflected a 16% margin with sustainable profitability.
- With $5.2 billion in cash and short-term investments, Palantir envisions growth and expansion in the future.
Palantir’s 2025 Outlook: Strong Growth Ahead
The company is already envisioning strong financial expectations for 2025, projecting solid growth across several key areas. For the first quarter of 2025, the company anticipates:
- Revenue between $858 million and $862 million.
- Adjusted operating income between $354 million and $358 million.
For the full year 2025, Palantir anticipates total revenue between $3.741 billion and $3.757 billion, driven by a growth rate of at least 54% in U.S. commercial revenue, which is expected to exceed $1.079 billion.
The company is also projecting adjusted operating income to range between $1.551 billion and $1.567 billion, with adjusted free cash flow between $1.5 billion and $1.7 billion. It will also continue to report GAAP operating income and net income each quarter, ensuring transparency while navigating the ambitious targets.
Palantir’s Commitment to Net Zero
Palantir Technologies UK achieved carbon neutrality in 2023 which was a significant milestone in its sustainability journey. The company retired carbon credits to offset all remaining emissions, aligning with its 2021 Climate Pledge.
Committed to achieving Net Zero, Palantir is focused on reducing emissions further and aligning with the UK Carbon Reduction Plan that focuses on limiting global warming to 1.5°C.
Total Carbon Emissions 2023
While Palantir acknowledges that its direct emissions—Scope 1, 2, and 3—are relatively small on a global scale, it believes its greatest contribution lies in empowering its customers. In this perspective, the company helps businesses track and reduce emissions, particularly within complex supply chains.
Its tools are already enabling companies to transition to clean energy and adopt e-mobility solutions, paving the way for a Net Zero future.
- In 2023, Palantir reported emissions totaling 4,196 tCO2e, a significant drop from its baseline year emissions of 7,161 tCO2e in 2019.

Renewable Energy Goals
Palantir has joined forces with leading organizations to accelerate global sustainability efforts. The company plays a vital role in helping its partners decarbonize supply chains, enhance grid resilience, and roll out EV networks. Its innovative Agora platform, launched in 2022, enables global commodity companies to track and reduce emissions across the value chain.
The company also supports renewable energy projects and uses digital twin technology to improve efficiency in energy-intensive industries.
Mitigating Cloud Compute and Data Center Emissions
Cloud computing has been one of Palantir’s biggest sources of carbon emissions. However, advancements in cloud efficiency and the use of sustainable energy by partners like AWS, Microsoft Azure, and Google Cloud have significantly reduced this impact.
- In 2023, Palantir cut cloud-related emissions by 32% compared to the previous year.
This progress came from improved compute efficiency in its platforms—Foundry, Gotham, Apollo, and the Artificial Intelligence Platform (AIP)—along with ongoing engineering efforts.
The company’s teams are continuously finding new ways to optimize cloud usage. By balancing efficiency with business growth, Palantir stays on track with its sustainability goals.
Slashing Travel Emissions with SAF
As a global company, business travel is essential to Palantir’s operations which also impacts its Scope 3 emissions. To reduce this impact, Palantir encourages employees to opt for virtual meetings when possible and carefully considers the need for in-person meetings to balance environmental and business needs.
In 2023, Palantir also continued its partnership with United Airlines’ Eco-Skies Alliance, committing to the use of sustainable aviation fuel (SAF) for its air travel. This initiative aims to lower its travel-related emissions while still supporting face-to-face collaboration.
Palantir’s impressive financial results in 2024 along with its reduced carbon emissions, highlight its commitment to both growth and sustainability. The company is on track to continue innovating and expanding, setting itself up for long-term success.
The post Palantir Reports Record-Breaking Q4 and Net Zero Success appeared first on Carbon Credits.
Carbon Footprint
Clean Energy Investment Hits $2.1 Trillion: A Step Closer to Net Zero or a Missed Mark?
Global investment in energy transition technologies reached an all-time high of $2.1 trillion in 2024, according to BloombergNEF. This marked an 11% increase from the previous year, driven by EVs, renewable energy, and advanced grid infrastructure. While the record-breaking investment highlights growing momentum toward cleaner energy solutions, experts caution that current funding levels fall far short of what’s needed to meet global climate targets.
Countries are ramping up investments in low-carbon energy to tackle climate change and meet Paris Agreement targets. However, experts warn that the current spending pace isn’t enough.
Bloomberg’s latest Energy Transition Investment Trends report shows that to hit net-zero emissions by 2050, global investment needs to triple to $5.6 trillion annually between 2025 and 2030. The gap is massive, highlighting the urgent need for bigger commitments and faster action.
Why do Energy Transition Investments Matter for Net Zero?
The energy sector plays a crucial role in addressing climate change as it contributes to approximately 75% of global greenhouse gas emissions. With temperatures rising every year, this transition to clean energy has become increasingly urgent.
Countries have committed to reducing emissions sustainably, aiming to keep global temperature rise below 2°C and limiting it to 1.5°C. The Paris Agreement target would be fulfilled only when the energy sector can reach net zero emissions by 2050.
This transition significantly requires phasing out fossil fuels fairly and systematically while eliminating inefficient fossil fuel subsidies that hinder transition.
Closing the Funding Gap
Now talking about the key factor i.e. investments. Governments and businesses are focusing on sustainable solutions like electric vehicles (EVs) and renewable energy. This certainly gives a positive signal towards developing a low-carbon economy.
However, there’s a funding gap. As said before, global investments in energy transition technologies reached $2.1 trillion. Yet, this amount is only 37% of the annual $5.6 trillion required from 2025 to 2030 to meet net-zero targets.
Achieving the net zero target will require not only increased funding but also bold policies and stronger international cooperation. Governments will need to be more decisive in scaling up efforts, remove barriers, and foster innovation across energy sectors.
For instance, accelerating progress in renewable energy, electrified transport, and grid modernization. With faster progress the funding gap can close and combating climate change will be easier.
Which Sector Took the Lead?
The report revealed that last year electrified transport topped the charts, pulling in $757 billion in funding. This includes investment in electric cars, commercial EV fleets, public charging networks, and fuel cell vehicles. With the EV market booming, it’s clear the world is betting big on cleaner mobility solutions.
Renewable energy also performed well. Globally $728 billion was invested in wind, solar, biofuels, and other green power sources. Additionally, power grid modernization secured $390 billion for upgrades like smarter grids, improved transmission lines, and digital tools to manage energy demand. Nuclear investment was flat at $34.2 billion.
In contrast, investment in emerging technologies, like electrified heat, hydrogen, carbon capture and storage (CCS), nuclear, clean industry and clean shipping, reached only $155 billion, for an overall drop of 23% year-on-year.
Investment in these sectors was hampered by affordability, technology maturity, and commercial scalability. Thus, the public and private sectors must work together to progress these technologies to reduce emissions.
Mature vs. Emerging: Where Clean Energy Investments Stand
Bloomberg further categorized investments into “mature” and “emerging” sectors. Mature technologies like renewables, energy storage, EVs, and power grids dominated funding while emerging sectors such as hydrogen, CCS, electrified heating, clean shipping, nuclear, and sustainable industries lagged.
- The mature Sector attracted $1.93 trillion in investments, accounting for the bulk of global energy transition funding.
- The emerging sector closed $154 billion in investments, making up just 7% of the total.
Despite facing challenges like higher interest rates and changing policies, mature technologies saw steady growth, increasing by 14.7% compared to the previous year. Their proven scalability and established business models make them trustworthy for governments and investors.
In contrast, emerging technologies faced significant setbacks. Investment in these sectors dropped by 23%, mainly due to high costs, unproven scalability, and limited commercial readiness. These challenges continue to slow their progress and hinder their potential to scale effectively

China Leads the Energy Investment Race
In 2024, mainland China emerged as the top market for energy transition investment, contributing $818 billion—a 20% rise from the previous year. This growth accounted for two-thirds of the global increase, with sectors like renewables, energy storage, nuclear, EVs, and power grids seeing robust development. China’s total investment surpassed the combined contributions of the US, EU, and UK.
Notably, China’s energy investment now equals 4.5% of its GDP, outpacing other nations like the EU and the US. While the US remains the second-largest market with $338 billion, Germany took third place, investing $109 billion in clean energy.
Other players like India and Canada also contributed to the global growth story, increasing investments by 13% and 19%, respectively.
2035 Forecast: A 3.6X Surge in Clean Energy Spending
To conclude Bloomberg came up with an investment forecast for 2030. The report says clean energy spending is set to rise sharply after 2030.
- Between 2031 and 2035, annual investments are projected to reach $7.6 trillion—3.6 times higher than 2024 levels.
- This marks a 37% increase compared to the annual spending expected between 2025 and 2030.
Electrified transport, including EVs and charging infrastructure, will continue to dominate investments during this period. As demand for clean mobility grows, funding for these technologies is likely to accelerate further, supporting the transition to a low-carbon future.
Thus, this steep rise in renewable energy spending after 2030 highlights the necessity for quick action. However, this year with Trump taking over, his stance on clean energy investment has been mixed. He has continued to promote traditional energy sources over clean energy, aligning with his “America First” agenda.
The post Clean Energy Investment Hits $2.1 Trillion: A Step Closer to Net Zero or a Missed Mark? appeared first on Carbon Credits.
-
Greenhouse Gases9 months ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change9 months ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change1 year ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change Videos1 year ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Climate Change1 year ago
Why airlines are perfect targets for anti-greenwashing legal action
-
Climate Change1 year ago
Clouds now contains plastic, contaminating ‘everything we eat and drink’
-
Climate Change1 year ago
Farmers turn to tech as bees struggle to pollinate
-
Climate Change Videos1 year ago