Connect with us

Published

on

The average UK winter has become around 1C warmer and 15% wetter over the past century, new Carbon Brief analysis shows.

The analysis covers more than 100 years of data on temperature, rainfall, wind speed and snow, to assess how UK winters have changed.

The data show that extremely warm and wet winters are becoming more common. Six of the 10 warmest winters on record were in the 21st century, and four of these also rank in the top 10 wettest years on record.

Despite the trend towards milder conditions, extreme cold snaps still hit the UK. The winter of 2009-10, for example, was dubbed the “Big Freeze of 2010” and clocked in as the UK’s least-windy, second-snowiest and eighth-coldest winter on record.

However, extreme cold periods are becoming less common. On average, the UK saw more than 12 snow days each winter in 1971-2000. This dropped to 9.5 snow days each winter by 1991-2020.

As the climate continues to warm, the UK can expect winters to continue getting warmer and wetter. Met Office projections suggest that, under an emissions pathway in line with current global policies, the average UK winter by 2080-99 will be 2C warmer and 11% wetter than they were in 1981-2000.

Warmer winters

The UK Met Office has been collecting meteorological data from thousands of weather stations across the UK since the 1880s. Using this data, it has produced a gridded dataset called HadUK, which provides complete coverage across the UK for a range of climate variables – including rainfall, temperature, snow days and wind speed – on a one-square-kilometre grid.

Carbon Brief has analysed the data for meteorological winters – defined as December, January and February – to determine how weather conditions have changed since records began.

The plot below shows a timeseries of annual winter average temperature (dark blue) over 1884-2021. These are shown as anomalies – that is, the difference compared to a baseline, which in this case is the average winter temperature over 1991-2020.

(Winters are shown on graphs in this article according to the year in which December falls. For example, the winter of December 2021 to February 2022 is shown as 2021.)

Average, minimum and maximum temperature over UK winter (monthly data averaged over December-February) for 1884-2021, compared to a 1991-2020 baseline.
Average, minimum and maximum temperature over UK winter (monthly data averaged over December-February) for 1884-2021, compared to a 1991-2020 baseline. 10-year rolling average shown in black. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The Met Office, in line with the World Meteorological Organisation, uses 30-year averages to assess changes in UK climate. The table below shows average absolute UK winter temperatures for overlapping 30-year time periods across the full data record.

Time period Average temperature Maximum temperature Minimum temperature
1881-1910 2.96* 5.77* 0.18*
1891-1920 3.29 6.06 0.53
1901-1930 3.50 6.21 0.80
1911-1940 3.51 6.21 0.83
1921-1950 3.41 6.12 0.73
1931-1960 3.29 6.05 0.56
1941-1970 3.09 5.84 0.35
1951-1980 3.17 5.91 0.46
1961-1990 3.22 5.94 0.51
1971-2000 3.65 6.40 0.91
1981-2010 3.75 6.58 0.94
1991-2020 4.12 6.97 1.28

Average, maximum and minimum winter temperatures for overlapping 30-year time periods, from 1881 to 2020, using the December-February average of mean monthly temperatures. An asterisk (*) indicates that a full 30 years was not available for this average.

The average UK winter in 1991-2020 was 0.9C warmer than during 1961-90. The most recent 30-year period also includes the warmest maximum, minimum and average temperatures since Met Office records began.

In addition, with an average winter temperature of 4.64C, the most-recent decade (2013-22) – not shown in the table – has seen a further temperature increase of 0.52C above the 1991-2020 average.

Warmer winters are already impacting UK wildlife. For example, Grahame Madge – senior press officer for the Met Office – told the Guardian that animals including hedgehogs, bats and butterflies are emerging from hibernation too early:

“Abnormal warm spells during winter can encourage species out of hibernation. Butterflies such as red admirals and small tortoiseshells and other insects can be particularly challenged as they can emerge largely without access to life-saving food sources like nectar. If the warm spell is followed by a return to colder conditions, the hibernating individuals will have used up valuable energy reserves without being able to replace them, possibly with disastrous consequences.”

Meanwhile, the National Trust says warmer winters have “particularly devastating impacts for trees”, as cold snaps are often not long enough to kill off harmful diseases and pests.

Looking at individual years gives a more detailed picture. The graphic below shows the warmest and coldest 10 winters in the UK since 1884. The dark blue line shows average UK winter temperature, and red and blue dots indicate the warmest and coldest individual winters, respectively. The table below shows the dates and temperatures of these winters.

Warmest and coldest 10 winters in the UK since 1884.
Warmest winters Coldest winters
Years Temperature (C) Years Temperature (C)
1 1988-99 5.76 1962-63 -0.31
2 2006-07 5.53 1894-95 0.42
3 2015-16 5.43 1946-47 0.75
4 1997-98 5.40 1978-79 1.13
5 2019-20 5.28 1939-4 1.23
6 1974-75 5.22 1916-17 1.33
7 2021-22 5.20 1928-29 1.46
8 2013-14 5.19 2009-10 1.63
9 1934-35 5.13 1885-8 1.65
10 2018-19 5.09 1940-41 1.80

Warmest and coldest 10 winters in the UK since 1884. The dark blue line shows average UK winter temperature, and red and blue dots indicate the warmest and coldest individual winters. The table beneath shows the dates and temperatures of these winters. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The graph shows that six of the 10 warmest winters on record have occurred in the 21st century. Conversely, only one of the UK’s coldest 10 winters were in the 21st century – the winter of 2009-10.

The Met Office also provides country-level data for different parts of the UK. The plot below shows 10-year rolling average winter temperature for England (dark blue), Scotland (red), Northern Ireland (light blue) and Wales (yellow).

10-year rolling average of winter temperatures for England (dark blue), Scotland (red), Northern Ireland (light blue) and Wales (yellow).
10-year rolling average of winter temperatures for England (dark blue), Scotland (red), Northern Ireland (light blue) and Wales (yellow). Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The plot shows that Scotland consistently sees the coldest winters, while England, Wales and Northern Ireland experience winter temperatures that are an average of around 1.5-2C warmer.

Snow days

As average temperatures rise across the UK, extremely cold days are becoming less common, while record-breaking warm days are becoming more frequent.

Five of the top 10 warmest days ever recorded during UK winters occurred during a single week February 2019.

Carbon Brief analysed the warmest maximum and coldest minimum temperature on record for each UK winter. The table below shows the years with the warmest (red) maximum daily temperatures and coldest (blue) minimum daily temperatures since 1960.

Warmest maximum temperatures Coldest minimum temperatures
Temperature (C) Year Temperature (C) Year
1 16.1 2018-19 -10.2 1986-87
2 14.3 1997-98 -10.1 1962-63
3 14.0 2015-16 -10.0 1981-82
4 13.8 1989-90 -9.9 1978-79
5 13.6 2003-04 -9.5 1971-72
6 13.5 1985-86 -9.3 2010-11
7 13.4 2011-12 -9.1 1995-96
8 13.3 2016-17 -8.9 1969-70
9 13.3 2021-22 -8.7 2009-10
10 13.2 1994-95 -8.7 1968-69

Years with the 10 warmest (red) maximum temperatures, and coldest (blue) minimum temperatures, based on individual winter days since 1960. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

Most of the warmest winter extremes on record were in the 21st century. Meanwhile, most of the coldest extremes were in the 20th century.

One way of measuring the change in extreme cold days is to count the number of “frost days” – days with a minimum temperature below 0C – recorded throughout the winter. Another way is to count the number of “snow days”, when snow can be seen on the ground at 9am.

Dr Mark McCarthy is the head of the Met Office National Climate Information Centre, which manages the UK’s climate records. He explains that to calculate snow days, an individual looks at a “representative patch of ground” at 9am in the morning, and if at least half of it is covered in snow, then it is counted as “snowy”.

These results are averaged across hundreds or thousands of observations. This means that, for example, “an average of five days of snow might mean that half of that region had 10 days and half the region had no days”, he explains.

The plot below shows the number of frost days since 1960 (red) and snow days since 1971 (blue) over winter. The black lines show the 10-year running average.

Total winter air frost days (red) and days with snow lying at 9am (blue).
Total winter air frost days (red) and days with snow lying at 9am (blue). The black lines show the 10-year running average. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The table below shows the total number of first and snow days during UK winters for four overlapping 30-year time periods.

Time period Frost days Snow days
1961-1990 38.43
1971-2000 35.07 12.29
1981-2010 35.17 11.73
1991-2020 32.75 9.54

Total number of frost and snow days for 30-year time periods, from 1931 to 2020, using the December-February average of mean monthly temperatures. An asterisk (*) indicates that a full 30 years was not available for this average.

The plot shows that air frost and snow days are closely linked. Snow will generally not form if the ground temperature is above 5C, and in the UK, the heaviest snowfalls tend to occur when the air temperature is between 0C and 2C

On average, the UK saw 12.3 snow days each winter over 1971-2000. This dropped to 9.5 snow days each winter by 1991-2020.

There is also regional variation in snow days. Over the entire 1971-2020 dataset, Scotland received 18.6 days of snow per winter on average, while the UK, Northern Ireland and Wales received between 7.2 and 8.8.

“Significant and widespread lying snow might have been considered fairly typical for a UK winter of several decades ago,” says the Met Office’s latest State of the UK climate report. However, it adds that “this type of event has become increasingly unusual in a warming climate over the last two or three decades”.

The graph below shows the UK winters with the greatest (light blue dots) and smallest (red dots) number of snow days since 1971.

Snowiest and least snowy 10 winters in the UK since 1884.
Snowiest winters Least snowy winters
Years Snow days Years Snow days
1 1978-79 35.62 2019-20 2.12
2 2009-10 30.59 1991-92 2.39
3 1981-82 26.90 2007-08 2.97
4 1985-86 23.69 1988-89 3.15
5 2010-11 23.13 2021-22 3.35
6 1984-85 21.54 1997-98 3.45
7 1976-77 20.77 2013-14 3.49
8 1977-78 18.54 2016-17 3.57
9 1995-96 18.43 2005-06 3.72
10 1990-91 18.13 1974-75 3.90

Snowiest and least snowy 10 winters in the UK since 1884. The dark blue line shows seasonal “snow days”, and red and blue dots indicate the snowiest and least snowy individual winters. The table beneath shows the dates and number of snow days of these winters. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

While the climate is becoming milder and snow is becoming less common, very cold and snowy winters can still happen. For example, the winter of 2009-10, dubbed the “Big Freeze of 2010” in parts of the UK media, was the least-windy, second-snowiest and eighth-coldest winter on record in the UK.

Severe snowfall that winter caused “very significant disruption across the UK”, according to the UK Met Office, which adds that “transport was particularly badly affected with snowfalls causing numerous road closures, and train and flight cancellations”.

On 18 December 2009, five Eurostar trains got stuck in the Channel Tunnel after cold temperatures caused electrical failures, trapping 2,000 people for 16 hours. All Eurostar services were cancelled for the next three days.

In January that winter, BBC News reported that “heavy snow and freezing temperatures has caused chaos across Scotland over the past three weeks, with hundreds of schools closed and motorists facing hazardous conditions on the roads”.

Snow covered suburban streets during uncommonly severe cold weather in the UK during the winter of 2009/2010.
Snow covered suburban streets during uncommonly severe cold weather in the UK during the winter of 2009/2010. Credit: Anthony Roberts / Alamy Stock Photo

Research from the UK Met Office indicates that the odds of the UK having a winter as cold as the one in 2009-10 will drop to less than 1% by the end of the century as global temperatures continue to rise.

Wetter winters

The total volume of rainfall recorded during UK winters is also rising. The plot below shows total winter rainfall in mm over 1836-2021 (blue) and the 10-year rolling average (black).

Total winter (Dec-Feb) rainfall in mm over 1836-2021, based on the sum of December-February monthly rainfall totals, compared to a 1991-2020 baseline.
Total winter (Dec-Feb) rainfall in mm over 1836-2021, based on the sum of December-February monthly rainfall totals, compared to a 1991-2020 baseline. 10-year rolling average shown in black. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The table below shows average UK winter rainfall totals for a series of overlapping 30-year time periods across the full data record.

30-year period Average annual winter rainfall (mm)
1831-1860 254.69*
1841-1870 276.00
1851-1880 284.28
1861-1890 287.46
1871-1900 281.51
1881-1910 279.06
1891-1920 300.55
1901-1930 311.07
1911-1940 314.51
1921-1950 305.00
1931-1960 298.76
1941-1970 290.82
1951-1980 293.23
1961-1990 301.82
1971-2000 329.22
1981-2010 330.01
1991-2020 346.98

Average winter rainfall over overlapping 30-year time periods, from 1831 to 2020, using the December-February average of mean monthly temperatures. An asterisk (*) indicates that a full 30 years was not available.

Between 1961-90 and 1990-2020, the UK winters became 15% wetter on average – increasing from around 300mm of rainfall to almost 350mm. The more recent decade of 2012-21 – not shown in the table – has seen further increases, with average winter rainfall of 380mm.

The Met Office also provides country-level rainfall data. The plot below shows 10-year rolling average winter temperature for England (dark blue), Scotland (red), Northern Ireland (light blue) and Wales (yellow).

The 10-year rolling of average total winter rainfall for England (dark blue), Scotland (red), Northern Ireland (light blue) and Wales (yellow).
The 10-year rolling of average total winter rainfall for England (dark blue), Scotland (red), Northern Ireland (light blue) and Wales (yellow). Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The graph shows that rainfall is increasing across all four regions of the UK, but remains consistently the lowest in England and the highest in Scotland and Wales.

Looking at the wettest and driest years across the UK shows that individual rainfall extremes are becoming more common. In a ranking going back to 1884, seven of the driest years were in the 19th century, while three were in the 20th. None of the driest years on record have been in the 21st century.

Meanwhile, four of the rainiest winters have been in the 21st century. The graph below shows the wettest (blue dots) and driest (red dots) winters since 1884.

Wettest and driest 10 winters in the UK since 1884.
Rainiest winters (mm) Least rainy winters (mm)
Years Winter rainfall Years Winter rainfall
1 2013-14 540.3 1963-64 121.3
2 2015-16 505.7 1890-91 141.4
3 1994-95 498.2 1844-45 164.6
4 1989-90 482.2 1933-34 170.4
5 2019-20 474.5 1846-47 171.3
6 1876-77 458.0 1962-63 171.5
7 1914-15 450.7 1857-58 176.6
8 1868-69 439.6 1840-41 179.6
9 2006-07 435.8 1937-38 186.9
10 1993-94 431.4 1854-55 189.1

Wettest and driest 10 winters in the UK since 1884. The dark blue line shows total winter rainfall, and blue and red dots indicate the driest and wettest snowy individual winters. The grey dashed lines the volume of rainfall recorded during the rainiest and least rainy winters on record. The table beneath shows the dates and total rainfall in mm of these winters. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The fact that UK winters are getting wetter makes sense, McCarthy tells Carbon Brief, because as the atmosphere heats up, it is able to hold more moisture, which can then fall as rain. According to the Clausius-Clapeyron equation, the air can generally hold around 7% more moisture for every 1C of temperature rise.

However, he adds that the observed trend in UK winter rainfall is “somewhat larger than can be explained purely through the thermodynamic process”, and explains that natural variability is also very important when discussing changes in UK winter rainfall.

“We’re in a particularly wet regime at the moment,” McCarthy explains, “so we are seeing lots of winter rainfall records and wetter winters, but it’s the combination of variability and climate change”.

For example, December 2015 topped the charts as the UK’s wettest month on record, after Storm Desmond swept across the UK, bringing very heavy rainfall and gale-force winds to much of northern England, southern Scotland and Ireland. The resulting floods left many homes inundated and at least 60,000 without power.

The winter of 2015-16 was also the third warmest on record. Preliminary analysis conducted at the time suggested that the exceptional rainfall totals were 40% more likely because of rising global temperatures.

The jet stream

The graph below shows the relationship between temperature and rainfall, where warm and wet winters are shown in the top right, while cool and dry winters are in the bottom left. Darker dots indicate more recent years.

Temperature and rainfall, where warm and wet winters are shown in the top right, while cold and dry winters are in the bottom left.
Temperature and rainfall, where warm and wet winters are shown in the top right, while cold and dry winters are in the bottom left. Labels indicate the year in which December falls – for example, 2013 refers to the winter of 2013/14. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The UK’s winter weather regime is strongly linked to the strength of the jet stream. This thin, fast flowing ribbon of air in the troposphere – the lowest layer of the earth’s atmosphere – acts to steer weather systems towards the UK.

A strong jet stream brings warm and damp winds to the UK from the west, resulting in a warm and wet winter.

For example, the winter of 2023-24 has already been dominated by a series of storms. Storm Jocelyn, which swept across the UK at the end of January 2024, was the 10th named storm of the season. “The storms have mainly been driven by a powerful jet stream,” BBC News reported.

Similarly, during the winter of 2013-14, a series of storms brought record-breaking rainfall to the UK, clocking in as the wettest and eighth-warmest winter on record in the UK. Intense rainfall led to “remarkably widespread and persistent flooding”, according to the Met Office. Around 18,700 insurance claims related to flooding were filed across the UK in the aftermath of the storms, costing an estimated £451m.

One study suggests that climate change made the sustained wet and stormy weather seen around 43% more likely, and put an extra 1,000 houses at risk of flooding along the River Thames.

The study attributes about two-thirds of the increase in likelihood to the atmosphere being able to hold more moisture because the world is warming up and the remaining third to the position of the jet stream.

Flooding in Abingdon Road area, Oxford, on 10 January 2013.
Flooding in Abingdon Road area, Oxford, on 10 January 2013. Credit: Roger Askew / Alamy Stock Photo

Conversely, a weak jet stream allows cold air from the Arctic and mainland Europe to enter from the east and north. “A slower, more buckled jet stream can cause areas of higher pressure to take charge, which typically brings less stormy weather, light winds and dry skies,” the Met Office says.

This was the case in the winter of 2009-10, which clocked in as the eighth-coldest and least-windy UK winter on record.

Sometimes, the jet stream can even get “stuck” – a phenomenon called blocking – and instead of shunting weather systems from west to east, it can allow a spell of cold, dry weather to sit over the UK for many days.

While there is a clear trend of UK winters getting warmer and wetter, the data on wind speed is less clear-cut. However, cool weather in the UK is often associated with low speeds, while warm weather is often brought by strong gusts.

The plot below shows average UK winter wind speed over 1969-2021 in knots. The darker line shows the 10-year rolling average, and the most and least windy years are shown by red and blue dots, respectively.

Windiest and least windy 10 winters in the UK since 1884.
Windiest winters Least windy winters
Years Average windspeed (knots) Years Average windspeed (knots)
1 1973-74 13.08 2009-10 7.90
2 1989-90 12.77 2010-11 8.62
3 1974-75 12.72 2005-06 8.81
4 1994-95 12.71 2008-09 9.03
5 2013-14 12.47 1984-85 9.04
6 1982-83 12.41 1976-77 9.31
7 1980-81 12.24 2018-19 9.32
8 1999-2000 12.11 2000-01 9.54
9 1988-89 12.11 1986-87 9.59
10 2019-20 12.08 2016-17 9.68

Windiest and least windy 10 winters in the UK since 1969. The dark blue line shows winter average wind speed, and red and blue dots indicate the windiest and least windy individual winters. The grey dashed lines the average wind speed during the windiest and least windy winters on record. The table beneath shows the dates and wind speeds of these winters. Credit: Chart by Carbon Brief, based on the Met Office HadUK dataset.

The table below shows average UK wind speed totals for three overlapping 30-year time periods.

30-year averages Average wind speed (knots)
1971-2000 11.06
1981-2010 10.60
1991-2020 10.55

Average winter wind speed for overlapping 30-year time periods, from 1971 to 2020, using the December-February average of mean monthly temperatures.

McCarthy tells Carbon Brief that there has been a notable decline in UK wind speed when looking at annual data, which is consistent with the trend of “stilling” – a slowdown in near surface wind speeds – measured globally. However, he says that this trend is less obvious in the winter-only data.

Meanwhile, the UK State of the Climate report 2022 states that there are no compelling trends in storminess when considering maximum gust speeds over the last four decades.

A range of other atmospheric circulation patterns can also impact UK winters.

The North Atlantic Oscillation (NAO) is a large-scale atmospheric pressure see-saw in the North Atlantic region, which describes the difference in air pressure between the high pressure sitting over the Azores, to the west of Portugal, and the low pressure over Iceland.

When the NAO is “positive” and the pressure difference is stronger than usual, the jet stream shifts towards the poles, bringing mild, wet and windy weather to North American and Eurasian winters and leaving the Arctic very cold.

When it is “negative” and the pressure difference weakens, storm tracks shift towards the equator, bringing cold, dry and calm winters to Europe.

Another mechanism is the “stratospheric polar vortex”. This low-pressure weather system sits around 50km above the Arctic in the stratosphere – the layer of the atmosphere above the troposphere. Its main feature is the strong west-to-east winds which encircle the north pole. These winds are known as the “polar night jet” because they only appear during the dark Arctic winter.

As with the jet stream in the troposphere, the polar night jet forms a boundary between the very cold Arctic air and the warmer air over the mid-latitudes. However, if something disrupts the stratospheric polar vortex it can weaken, reverse direction and even split into two. This can trigger a “sudden stratospheric warming” event where air collapses in over the Arctic, causing a spike in temperatures in the stratosphere – by as much as 50C in just a couple of days.

This allows the cold air the polar vortex was holding in to spill out into the mid-latitudes during the weeks that follow. This is what caused the “Beast from the East” snowstorm that hit the UK in 2018. (This is not well reflected in the UK winter data, as the brunt of the storm hit in March 2018 after the end of meteorological winter.)

In general, however, the UK has experienced a run of mild, wet winters in the most recent decade, including the very wet winters of 2013, 2015 and 2019. These are consistent with a positive phase of the NAO and strong polar vortex, according to the latest State of the UK Climate report.

Projections

As the planet continues to warm, the UK’s climate will shift “towards warmer, wetter winters and hotter, drier summers”, the Met Office says.

The UK Climate Projections 2018 (UKCP18) is a series of climate change projections for the UK produced by the UK Met Office, taking advantage of the latest observed data and climate models

The projections include temperature and rainfall changes – for averages and extremes – for each month and season of the year, and for different emissions scenarios and future time periods throughout this century.

The maps below show the probabilistic projections for summer average temperature (top) and winter precipitation (bottom) in the 2080s under the RCP4.5 emissions pathway, relative to a 1961-90 baseline. In this pathway, global temperatures are projected to rise by around 2.7C of warming above pre-industrial levels by 2081-2100, which is broadly in line with the trajectory under current global policies.

The three percentiles (10th, 50th and 90th) reflect the likelihood of those temperatures and rainfall anomalies occurring. The 50th percentile (middle maps) is the “central estimate” across the models, while the 10th (left) and 90th (right) percentiles reflect the lowest 10% and highest 10% of the model results.

UKCP18 projections of winter average temperature in the 2080s (top) and winter precipitation anomaly in the 2080s (bottom), relative to a 1961-90 baseline, under the RCP4.5 emissions scenario.
UKCP18 projections of winter average temperature in the 2080s (top) and winter precipitation anomaly in the 2080s (bottom), relative to a 1961-90 baseline, under the RCP4.5 emissions scenario. Results are shown at three percentiles: 10th (left), 50th (middle) and 90th (right). Source: Generated from the UKCP18 User Interface.

The table below shows UKCP18 projections for changes in average UK winter temperature and precipitation under RCP4.5, under the 10th, 50th and 90th percentile, for 2080-99, compared to a 1981-2000 baseline.

10th percentile change 50th percentile change 90th percentile change
Change in average winter temperature (C) +0.7 +2.0 +3.5
Change in average winter precipitation (%) -2.0 +11.0 +25.0

Source: UKCP18 Key results spreadsheet

As a central estimate, these projections suggest that by 2080-99, UK winters will be 2C warmer and 11% wetter than they were in 1981-2000.

However, the picture is more complex for wind speed. The Met Office explains that storms in the UK are influenced by factors including sea surface temperatures, Arctic sea ice melt and the jet stream.

It says that “under climate change some of these influences will strengthen storms and others weaken them, as well as potentially change the parts of the world that storms affect”.

It adds:

“UKCP18 projected an increase in near surface wind speeds over the UK for the second half of the 21st century for the winter season when more significant impacts of wind are experienced. However, the increase in wind speeds is modest compared to natural variability from month to month and season to season, so confidence is low.”

The post Analysis: How UK winters are getting warmer and wetter appeared first on Carbon Brief.

Analysis: How UK winters are getting warmer and wetter

Continue Reading

Climate Change

Efforts to green lithium extraction face scrutiny over water use 

Published

on

Mining companies are showcasing new technologies which they say could extract more lithium – a key ingredient for electric vehicle (EV) batteries – from South America’s vast, dry salt flats with lower environmental impacts.

But environmentalists question whether the expensive technology is ready to be rolled out at scale, while scientists warn it could worsen the depletion of scarce freshwater resources in the region and say more research is needed.

The “lithium triangle” – an area spanning Argentina, Bolivia and Chile – holds more than half of the world’s known lithium reserves. Here, lithium is found in salty brine beneath the region’s salt flats, which are among some of the driest places on Earth.

Lithium mining in the region has soared, driven by booming demand to manufacture batteries for EVs and large-scale energy storage.

Mining companies drill into the flats and pump the mineral-rich brine to the surface, where it is left under the sun in giant evaporation pools for 18 months until the lithium is concentrated enough to be extracted.

The technique is relatively cheap but requires vast amounts of land and water. More than 90% of the brine’s original water content is lost to evaporation and freshwater is needed at different stages of the process.

One study suggested that the Atacama Salt Flat in Chile is sinking by up to 2 centimetres a year because lithium-rich brine is being pumped at a faster rate than aquifers are being recharged.

    Lithium extraction in the region has led to repeated conflicts with local communities, who fear the impact of the industry on local water supplies and the region’s fragile ecosystem.

    The lithium industry’s answer is direct lithium extraction (DLE), a group of technologies that selectively extracts the silvery metal from brine without the need for vast open-air evaporation ponds. DLE, it argues, can reduce both land and water use.

    Direct lithium extraction investment is growing

    The technology is gaining considerable attention from mining companies, investors and governments as a way to reduce the industry’s environmental impacts while recovering more lithium from brine.

    DLE investment is expected to grow at twice the pace of the lithium market at large, according to research firm IDTechX.

    There are around a dozen DLE projects at different stages of development across South America. The Chilean government has made it a central pillar of its latest National Lithium Strategy, mandating its use in new mining projects.

    Last year, French company Eramet opened Centenario Ratones in northern Argentina, the first plant in the world to attempt to extract lithium solely using DLE.

    Eramet’s lithium extraction plant is widely seen as a major test of the technology. “Everyone is on the edge of their seats to see how this progresses,” said Federico Gay, a lithium analyst at Benchmark Mineral Intelligence. “If they prove to be successful, I’m sure more capital will venture into the DLE space,” he said.

    More than 70 different technologies are classified as DLE. Brine is still extracted from the salt flats but is separated from the lithium using chemical compounds or sieve-like membranes before being reinjected underground.

    DLE techniques have been used commercially since 1996, but only as part of a hybrid model still involving evaporation pools. Of the four plants in production making partial use of DLE, one is in Argentina and three are in China.

    Reduced environmental footprint

    New-generation DLE technologies have been hailed as “potentially game-changing” for addressing some of the issues of traditional brine extraction.

    “DLE could potentially have a transformative impact on lithium production,” the International Lithium Association found in a recent report on the technology.

    Firstly, there is no need for evaporation pools – some of which cover an area equivalent to the size of 3,000 football pitches.

    “The land impact is minimal, compared to evaporation where it’s huge,” said Gay.

    A drone view shows Eramet’s lithium production plant at Salar Centenario in Salta, Argentina, July 4, 2024. (Photo: REUTERS/Matias Baglietto)

    A drone view shows Eramet’s lithium production plant at Salar Centenario in Salta, Argentina, July 4, 2024. (Photo: REUTERS/Matias Baglietto)

    The process is also significantly quicker and increases lithium recovery. Roughly half of the lithium is lost during evaporation, whereas DLE can recover more than 90% of the metal in the brine.

    In addition, the brine can be reinjected into the salt flats, although this is a complicated process that needs to be carefully handled to avoid damaging their hydrological balance.

    However, Gay said the commissioning of a DLE plant is currently several times more expensive than a traditional lithium brine extraction plant.

    “In theory it works, but in practice we only have a few examples,” Gay said. “Most of these companies are promising to break the cost curve and ramp up indefinitely. I think in the next two years it’s time to actually fulfill some of those promises.”

    Freshwater concerns

    However, concerns over the use of freshwater persist.

    Although DLE doesn’t require the evaporation of brine water, it often needs more freshwater to clean or cool equipment.

    A 2023 study published in the journal Nature reviewed 57 articles on DLE that analysed freshwater consumption. A quarter of the articles reported significantly higher use of freshwater than conventional lithium brine mining – more than 10 times higher in some cases.

    “These volumes of freshwater are not available in the vicinity of [salt flats] and would even pose problems around less-arid geothermal resources,” the study found.

    The company tracking energy transition minerals back to the mines

    Dan Corkran, a hydrologist at the University of Massachusetts, recently published research showing that the pumping of freshwater from the salt flats had a much higher impact on local wetland ecosystems than the pumping of salty brine. “The two cannot be considered equivalent in a water footprint calculation,” he said, explaining that doing so would “obscure the true impact” of lithium extraction.

    Newer DLE processes are “claiming to require little-to-no freshwater”, he added, but the impact of these technologies is yet to be thoroughly analysed.

    Dried-up rivers

    Last week, Indigenous communities from across South America held a summit to discuss their concerns over ongoing lithium extraction.

    The meeting, organised by the Andean Wetlands Alliance, coincided with the 14th International Lithium Seminar, which brought together industry players and politicians from Argentina and beyond.

    Indigenous representatives visited the nearby Hombre Muerto Salt Flat, which has borne the brunt of nearly three decades of lithium extraction. Today, a lithium plant there uses a hybrid approach including DLE and evaporation pools.

    Local people say the river “dried up” in the years after the mine opened. Corkran’s study linked a 90% reduction in wetland vegetation to the lithium’s plant freshwater extraction.

    Pia Marchegiani, of Argentine environmental NGO FARN, said that while DLE is being promoted by companies as a “better” technique for extraction, freshwater use remained unclear. “There are many open questions,” she said.

    AI and satellite data help researchers map world’s transition minerals rush

    Stronger regulations

    Analysts speaking to Climate Home News have also questioned the commercial readiness of the technology.

    Eramet was forced to downgrade its production projections at its DLE plant earlier this year, blaming the late commissioning of a crucial component.

    Climate Home News asked Eramet for the water footprint of its DLE plant and whether its calculations excluded brine, but it did not respond.

    For Eduardo Gigante, an Argentina-based lithium consultant, DLE is a “very promising technology”. But beyond the hype, it is not yet ready for large-scale deployment, he said.

    Strong regulations are needed to ensure that the environmental impact of the lithium rush is taken seriously, Gigante added.

    In Argentina alone, there are currently 38 proposals for new lithium mines. At least two-thirds are expected to use DLE. “If you extract a lot of water without control, this is a problem,” said Gigante. “You need strong regulations, a strong government in order to control this.”

    The post Efforts to green lithium extraction face scrutiny over water use  appeared first on Climate Home News.

    Efforts to green lithium extraction face scrutiny over water use 

    Continue Reading

    Climate Change

    Maryland’s Conowingo Dam Settlement Reasserts State’s Clean Water Act Authority but Revives Dredging Debate

    Published

    on

    The new agreement commits $340 million in environmental investments tied to the Conowingo Dam’s long-term operation, setting an example of successful citizen advocacy.

    Maryland this month finalized a $340 million deal with Constellation Energy to relicense the Conowingo Dam in Cecil County, ending years of litigation and regulatory uncertainty. The agreement restores the state’s authority to enforce water quality standards under the Clean Water Act and sets a possible precedent for dozens of hydroelectric relicensing cases nationwide expected in coming years.

    Maryland’s Conowingo Dam Settlement Reasserts State’s Clean Water Act Authority but Revives Dredging Debate

    Continue Reading

    Climate Change

    A Michigan Town Hopes to Stop a Data Center With a 2026 Ballot Initiative

    Published

    on

    Local officials see millions of dollars in tax revenue, but more than 950 residents who signed ballot petitions fear endless noise, pollution and higher electric rates.

    This is the second of three articles about Michigan communities organizing to stop the construction of energy-intensive computing facilities.

    A Michigan Town Hopes to Stop a Data Center With a 2026 Ballot Initiative

    Continue Reading

    Trending

    Copyright © 2022 BreakingClimateChange.com