Connect with us

Published

on

Please admit California’s Pajaro Valley to the storehouse of evidence that charging a fee to use scarce resources can stretch those resources, to the benefit of all.

Never heard of Pajaro Valley? Me neither, until I came across NY Times climate reporter Coral Davenport’s compelling end-of-year story, Strawberry Case Study: What if Farmers Had to Pay for Water? Turns out I once hitch-hiked there en route to the spectacular Big Sur coast south of Monterey. But the payoff today is in the story’s subhead: With aquifers nationwide in dangerous decline, one part of California has tried essentially taxing groundwater. New research shows it’s working.

California’s Pajaro Valley, at center of this Google Map, hugs the Pacific Coast midway between Santa Cruz and Monterey and straddles the two counties named for those cities.

What’s working? A charge for groundwater extracted to grow strawberries, raspberries, brussels sprouts, lettuce and kale, administered by the state-chartered Pajaro Valley Water Management Agency to prevent saltwater from the adjacent Pacific Ocean from intruding into underground aquifers. The fee, which began several decades ago at a nominal $30 per acre-foot of water to recover PVWMA’s water-metering costs, now runs as high as $400, according to Davenport.

Lest that rise seem meteoric, and today’s price appear punitive, consider that currently the agency’s total annual water fees, $12 million, equate to barely 1 percent of annual Pajaro Valley crop revenues of $12 million. What’s more, an acre-foot — the standard volumetric for water supply — is enormous: enough to provide 3 million tall glasses of water, by my calculations. Even the projected 2025 price of $500 per acre-foot translates to a mere one-sixtieth of a cent per glass.

To be sure, that calculation is merely illustrative; water for drinking and water for growing crops are two different things. But consider what Pajaro Valley growers get from paying for water.

First, their payments are helping assure increased supplies of crop-worthy water. Revenue from the water fees enabled PVWMA to undertake a $6 million project that captures excess rainwater from a creek near the ocean and injects it into underground wells to be used for irrigation, and a $20 million water recycling plant that cleans 5 million gallons of sewage a day and pipes it to farm fields. Next up, Davenport tells us, is an $80 million system to capture and store more rainwater for irrigation. By replenishing and “stretching’ supplies of groundwater, these investments help ensure that brackish water from the ocean doesn’t seep into Pajaro Valley wells.

Just as importantly, the growers receive a potent incentive to use available water supplies more efficiently. “Gone were the days of sprinklers that drenched fields indiscriminately,” Davenport writes. “To save money, many Pajaro farmers invested in precision irrigation technology to distribute carefully measured water exactly where it was needed.” (See text box.) Though the article doesn’t mention it, these investments by dozens of individual growers might not have materialized had not all growers been subject to the same incentives to conserve as well.

Economics

Undergirding Davenport’s upbeat reporting is a 2023 working paper, The Dynamic Impacts of Pricing Groundwater, by three economists at U-C Berkeley’s Dept. of Agricultural and Resource Economics. In academic parlance, “dynamic” doesn’t connote a Marvel superhero, it refers to changes over time. By examining changes in water usage over time, the authors conclude that each “21% price increase led to a … 22% reduction in average annual groundwater extraction” by Pajaro Valley growers.

The implied price-elasticity is roughly negative 1.3. (The paper helpfully reports that “The reduction in annual water use doubles between the first year and the fifth year after the tax, with the implied price elasticity of demand ranging from negative 0.86 to negative 1.97.) This empirically-derived price sensitivity is far greater than the price elasticities assumed in CTC’s carbon-tax model, befitting not only the greater salience of water use for growers vis-a-vis energy use for consumers and even most businesses, but the greater agency of Pajaro Valley growers who, Davenport’s reporting suggests, over time have increasingly bought into PVWMA’s groundwater fee in both theory and execution.

After reading Davenport’s article I reached out to hydrologist, climatologist and water sustainability expert Peter Gleick, whose latest book, The Three Ages of Water: Prehistoric Past, Imperiled Present, and a Hope for the Future, was published last year by Hachette / Public Affairs. Peter praised the article while preferring to denote the PVWMA groundwater charge “not [as a] tax but a fee or simply a price for a commodity.” He added, “When we pay for something, we’re more conscious of how we use it. When something is free, we’re more likely to misuse and abuse it. That’s certainly been the case historically for California groundwater.”

Carbon Taxes?

A number of posts in this space have touted — we might say “flogged” — other instances of resource or externality pricing, as possible templates for large-scale carbon pricing. In 2016 we wrote about Berkeley’s soda tax, actually a tax on the sugar content of soft drinks, and summarized research showing that sales of sugar-sweetened beverages fell 21% in that city while rising 4% in “control groups,” i.e., neighboring municipalities where soft drinks continued untaxed. Last year we explained why Congestion pricing, coming soon to New York City, could bode well for carbon-taxing — a message we previously broadcast several times in 2019 as the enabling legislation was being enacted in Albany, in March and in April.

We also dug deep in 2017, writing about an incipient NYC nickel fee on carryout bags dispensed at supermarkets, grocery and convenience stores. (The fee was a month away from taking effect, and though we haven’t yet seen before/after comparisons, anecdotal evidence suggests that trees in New York City are today far less encumbered by what we referred to then as “gossamer debris stuck, like tumors, to our half-a-million street trees.”) We can also go back half a century, to 1972, when NYC environmental officials conjured a “dirty oil surcharge” that forced petroleum suppliers to cough up a fee for each barrel of high-sulfur oil they brought into the city, a remarkably successful (but little known) instance of externality pricing that I memorialized in a 2009 post for Grist, Pollution Taxes Work.

Needless to say, none of these fees — not the soda tax, not congestion charging, not the carryout bag fee, and not the dirty oil surcharge — has paved the way for full-on carbon pricing. While each of them has been or will be a resounding success, their scale is far too local and the stakes far too small to translate automatically to national or even state-level carbon pricing. The same will hold for California’s Pajaro Valley groundwater fee. Indeed, California water districts are wrestling today with the hard work of fulfilling a state mandate requiring every part of the state to devise a plan to conserve groundwater.

Happily, Davenport notes that PVWMA officials and even some growers are advising their statewide counterparts to emulate their approach, including “local control” rather than state or even county governance. Less happily, she reports that the Westlands Water District, which serves the state’s giant Central Valley breadbasket, is pushing a plan “that would allow growers to pay for credits to use groundwater above a certain allocation.”  The growers “could buy and sell the credits, starting at about $200 a credit,” Davenport notes. While this scheme certainly improves on the status quo of charging little or nothing for groundwater use, it’s complicated and drenched in market ideology, much as carbon cap-and-trade systems needlessly encumber what could and should be straightforward carbon pricing.

Let’s not end on that dour note, however. These instances of resource charging — whether to stretch a limited resource or to internalize pollution or other externality costs — make it easier to build support for enacting new ones. Davenport’s story — here’s the link again — is both brilliant reporting and cause for optimism.

We close with a snap of the story opening and photo as they appeared on the front page of today’s (Jan. 4, 2024) Times, above the fold. Below it are calculations in which we derived figures in the first part of this post.

Calculation #1: Glasses of water in an acre-foot.

  • One acre = 43,560 ft^2, so one acre-foot = 43,560 ft^3.
  • One ft^3 (cubic foot) contains 957.5 fluid oz. (per inchcalculator.com; that figure jibes with the 62.4 lb weight of one cubic foot of water).
  • A tall water glass contains 14 fluid oz. Thus, one ft^3 of water can fill 957.5/14 = 68.4 tall glasses.
  • One acre-foot then contains enough water to fill 43,560 x 68.4 = 2.98 million tall glasses, which we round to 3 million.

Calculation #2: Groundwater-use price-elasticity inferred from empirical finding that a 21 percent price increase evokes a 22 percent decrease in usage.

  • It is tempting to reduce this roughly 1-to-1 relationship to a (negative) 1.0 price-elasticity. However, that would ignore the law of diminishing returns and, mathematically, the convex relationship between changes in price and changes in usage.
  • The price-elasticity is derived by solving for e in the equation, (1 + 0.21)^e = (1 minus 0.22).
  • Using base-10 logarithms, we have: e times log 1.21 = log 0.78, which (omitting one or two steps) leads to e = negative 1.3.

Carbon Footprint

Are EVs Truly Green? How Battery Recycling is Powering a Cleaner Future

Published

on

battery recycling

Recycling helps recover valuable materials, cut waste, and support clean energy. With stricter sustainability rules, governments are pushing for greener solutions. EV companies are also focusing on battery recycling. This helps lower supply chain emissions and cut their carbon footprint.

Thus, battery recycling has become essential for a greener future. We have studied the Lithium-ion battery recycling report by the Chemical Abstracts Service aka CAS (a division of the American Chemical Society) and Deloitte. It provides insights into key growth drivers, emissions impact, and the current and future outlook of the market. Let’s dive in!

What’s Driving the EV Battery Recycling Market?

EV batteries have valuable metals, such as lithium, cobalt, and nickel. However, getting rid of them is difficult and this is where recycling comes in use. Thus, the rising need for these energy metals is the key driver for the EV battery recycling market.

This approach reduces waste, conserves resources, and supports a more sustainable supply chain. As demand for EVs grows, so does the need for efficient battery recycling to lessen reliance on mining.

Notably, strict environmental rules are also driving manufacturers to adopt greener practices. Advancements in recycling technology are helping recover more metal. This makes the process cheaper and better for businesses. On a global scale, many countries are promoting a circular economy.

                        Supply and demand gap for critical minerals

supply and demand critical minerals
Source: IEA Global Critical Minerals Outlook 2024, Deloitte research

Asia-Pacific Leads in Battery Recycling

In 2023, Asia-Pacific led the battery recycling market. High EV adoption in China, Japan, and South Korea increased demand for recycling. The region produces many end-of-life batteries as a major EV and battery manufacturer.

Strong government support, incentives, and environmental awareness are driving growth. Investments in recycling technology and infrastructure further strengthen the region’s lead. This is evident from more patents than research papers.

Geographical distribution of publications in the field of lithium-ion battery (LIB) recycling

China battery recycling
Source: CAS Content Collection

The Top Player: Brunp Recycling Technology

China’s Brunp Recycling Technology, a subsidiary of CATL, is a top player in battery recycling. The company focuses on four major areas of battery material development:

  • Ultra-High Nickel: Increases nickel content while reducing cobalt to boost battery capacity.

  • High Voltage: Raises the charging voltage limit while maintaining safety and performance.

  • Intelligent Management: Uses digital tools and smart systems for efficient operations.

  • Emerging Materials: Develop new materials for various applications, continuously improving energy density.

These advancements help improve battery performance, efficiency, and sustainability. Notably, Japan’s Sumitomo Metal Mining follows as another key company in this field.

Global Regulations Powering Battery Recycling

Governments are tightening laws to improve battery recycling. Policies like Extended Producer Responsibility (EPR) require manufacturers to handle waste management. EPR makes producers responsible for collecting and recycling their lithium-ion batteries. This encourages sustainable manufacturing and proper disposal.

New rules in the EU, U.S., and Asia are shaping the industry:

China’s Leadership

China introduced key recycling laws as early as 2016. In 2018, the Ministry of Industry and Information Technology (MIIT) set strict rules for battery handling, recycling traceability, and technical standards. The 2020 Solid Waste Pollution Law stopped waste imports and boosted recycling. Also, the Circular Economy Development Plan (2021-2025) prioritizes battery reuse. In 2024, MIIT suggested new standards for recycling waste batteries. They are now being reviewed.

EU Regulations

In 2023, the EU launched New Battery Regulations. These rules address the whole lifecycle of batteries, from design to end-of-life. By 2027, manufacturers must recover 50% of lithium from old batteries and 80% by 2031. Companies need to track their batteries’ carbon footprint and meet recycling content targets by 2025. Additionally, by 2027, a digital battery passport will improve transparency and traceability.

U.S. Policies

The Environmental Protection Agency (EPA) regulates lithium-ion battery (LIB) recycling under the Resource Conservation and Recovery Act (RCRA). In 2023, the U.S. issued federal guidelines clarifying how hazardous waste laws apply to LIBs. The EPA plans to introduce a dedicated LIB recycling policy by mid-2025.

India and South Korea are working on policies to support LIB recycling.

Making EVs Greener: Decarbonizing the Battery Supply Chains

The report has highlighted the most critical information on EVs. EVs have no tailpipe emissions. However, making their batteries does create a lot of carbon emissions.

  • Lithium-ion battery production accounts for 40-60% of an EV’s total emissions. 

Top automakers are now focusing on sustainable sourcing and recycling. As EV demand rises, battery recycling will be crucial for cutting carbon footprints and securing raw materials. And this is why regulators and investors are also pushing for cleaner supply chains.

Slashing Emissions and Saving Resources

Recycling lithium-ion batteries is much better for the environment than mining new metals. A study from Stanford University, published in Nature Communications, found that recycling creates less than half the emissions of traditional mining. It also uses only one-fourth of the water and energy.

The benefits are even bigger when recycling scrap from manufacturing. Scrap-based recycling created just 19% of the emissions, used 12% of the water, and needed only 11% of the energy compared to mining. Using less energy also means fewer air pollutants. So, battery recycling is a cleaner and smarter choice.

  • The study concluded that recycling reduces greenhouse gas emissions by 58–81% and cuts water use by 72–88%.

The CAS report also published a 2023 study by Fraunhofer IWKS that evaluated the life-cycle environmental impact of three major battery recycling methods- Pyrometallurgy, Hydrometallurgy, and Direct recycling. The two significant deductions are:

  • Recycling 1 kg of lithium batteries can reduce carbon emissions by 2.7 to 4.6 kg CO₂ equivalent.
  • Direct recycling is the most effective method for the environment.

      Life-cycle environmental impacts of different recycling routes of LIBs

battery recycling carbon emissions
Source: Fraunhofer IWKS, CAS report

Making Battery Recycling Profitable

Battery recycling has three phases: high-cost investment, break-even, and strong profits. Initially, recyclers invest heavily to set up facilities and meet regulations.

They can start making money by cutting costs, recovering valuable metals, and reducing waste. Costs depend on transport, labor, battery design, and recycling methods. Recyclers can stay profitable by automating tasks, lowering transport costs, and using advanced technology.

Batteries with valuable metals like cobalt and copper, such as NMC and NCA, offer quick returns. In contrast, LFP batteries provide better long-term benefits when reused before recycling.

Choosing the right recycling method—pyrometallurgy, hydrometallurgy, or direct recycling—can boost efficiency. Studies show recycling offers environmental benefits worth $3 to $11 per kWh. However, this also depends on carbon pricing and market trends.

                              Net recycling profit comparison

battery Recyling
Source: Laura Lander, 2021

Subsequently, recyclers should focus on improving their processes. They also need to form partnerships to strengthen their business.

The Future of Battery Recycling: Turning Challenges into Opportunities

Battery recycling faces hurdles like high costs, complex processes, and inefficient collection. Various battery designs and hazardous materials add further challenges. New technology, digital tools, and teamwork in the industry are making recycling cheaper and easier.

Polaris Market Research reports the EV battery recycling market was $8.89 billion in 2023. It is set to grow from $11.09 billion in 2024 to $65.71 billion by 2032, with a 24.9% annual growth rate.

battery recycling

Digital Tools Improve Efficiency

Traditional recycling relies on slow, expensive, and unsafe manual processes. Digital tools are transforming this by tracking materials, automating sorting, and improving disassembly. These innovations enhance efficiency and help companies comply with strict regulations, reducing legal risks.

For example, digital twins optimize processes, blockchain ensures traceability and cloud platforms enable real-time tracking. Umicore uses AI and cloud solutions. CATL, on the other hand, uses blockchain to track materials.

Similarly, companies like Redwood Materials, BYD, and Toyota use AI to predict optimal recycling timelines.

The Power of Industry Collaboration

The disrupted supply chain remains a major challenge. In China, only 25% of retired EV batteries go through formal recycling channels. Companies are making batteries easier to recycle. They are also working together in the supply chain to solve this issue.

In October 2023, Stellantis and Orano teamed up to recycle EV batteries and factory scrap in Europe and North America. Such collaborations are driving a more sustainable and scalable battery recycling industry.

Similarly, last December Li-Cycle Holdings Corp. resumed its collaboration with Glencore International AG, (a subsidiary of Glencore plc). Both companies will evaluate the feasibility of building a new Hub facility in Portovesme, Italy that could potentially produce critical battery materials such as lithium, nickel, and cobalt from recycled battery content.

The post Are EVs Truly Green? How Battery Recycling is Powering a Cleaner Future appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Greenpeace Faces $660 Million Verdict: A Turning Point for Climate Action?

Published

on

Greenpeace Faces $660 Million Verdict: A Turning Point for Climate Action?

Greenpeace is facing a $660 million lawsuit by Energy Transfer Partners. The verdict is more than a legal case; it could change the climate movement significantly. The lawsuit came from Greenpeace’s involvement in the protests against the Dakota Access Pipeline (DAPL). This project has been controversial for its environmental and social effects.

The talk about the verdict often centers on free speech. But its wider effects on climate activism and the fight against fossil fuels mustn’t be overlooked.

The Dakota Access Pipeline and Its Climate Impact

The Dakota Access Pipeline is 1,172 miles long. It has sparked many environmental protests since it was built. The pipeline transports crude oil from North Dakota to refineries in other parts of the country.

Dakota Access Pipeline
Source: Wikipedia

Environmentalists say this project worsens climate change. It helps with fossil fuel extraction and burning. The Standing Rock Sioux Tribe and other activists opposed the pipeline. They feared oil spills could contaminate water sources and harm ecosystems.

Fossil fuel projects like DAPL contribute significantly to global carbon emissions. The pipeline can transport 570,000 barrels of crude oil daily. When burned, this oil releases millions of metric tons of CO₂ into the air each year.

Greenpeace opposes these projects because of the need to shift from fossil fuels to renewable energy. However, this legal verdict against the organization raises concerns about the future of climate advocacy.

Greenpeace’s Role in Climate Advocacy

For decades, Greenpeace has led the fight for the environment. They challenge companies and governments to act more decisively against climate change. The organization has been key in raising awareness about deforestation, ocean conservation, and the risks of relying on fossil fuels.

In the case of the Dakota Access Pipeline, Greenpeace supported Indigenous-led protests and helped amplify concerns about the project’s long-term environmental consequences. Energy Transfer claimed that the organization defamed them and stirred up protests. However, Greenpeace says their actions aimed to hold fossil fuel companies accountable for climate damage.

Mads Christensen, Greenpeace International Executive Director, noted:

“We are witnessing a disastrous return to the reckless behaviour that fuelled the climate crisis, deepened environmental racism, and put fossil fuel profits over public health and a liveable planet. The previous Trump administration spent four years dismantling protections for clean air, water, and Indigenous sovereignty, and now along with its allies wants to finish the job by silencing protest. We will not back down. We will not be silenced.”

Legal Threats Against Climate Activists and Climate Movement

This lawsuit shows a trend. Fossil fuel companies are using legal action more often to fight against environmental opponents. Big companies often use lawsuits called Strategic Lawsuits Against Public Participation (SLAPPs) to stop activism. SLAPPs can cost environmental groups a lot of money. This makes it tough for them to keep working.

Greenpeace’s legal battles are not unique. In recent years, companies like Shell, TotalEnergies, and ENI have also pursued legal actions against Greenpeace and other environmental groups. These lawsuits worry people. This could affect climate activists’ fight against high-emission industries.

The ruling against Greenpeace could have a chilling effect on climate activism. Environmental groups might hold back from challenging big fossil fuel companies if they worry about expensive legal issues. This could slow down efforts to hold polluters accountable and push for stronger climate policies.

The case also raises questions about how fossil fuel companies may use legal systems to avoid scrutiny. Companies like Energy Transfer can shift the conversation from their carbon footprint to the activists. This way, they avoid addressing the environmental and climate concerns raised by these groups.

Fossil Fuel Expansion vs. Climate Goals

While global leaders urge cuts in greenhouse gas emissions, fossil fuel projects keep growing. The International Energy Agency (IEA) has warned that to keep global warming below 1.5°C, no new oil and gas projects should be approved. Yet, pipelines like DAPL show that people keep investing in fossil fuels. This focus delays the shift to cleaner energy options.

Greenpeace’s opposition to such projects aligns with the broader climate science consensus that urgent action is needed. However, this lawsuit shows how fossil fuel companies fight back. They shift the focus from environmental issues to legal battles.

The growth of fossil fuel industries, especially oil and gas, creates major issues for global climate goals. This is because they emit a lot of greenhouse gases (GHG).

In 2023, CO₂ emissions from fossil fuels hit a record 37.4 billion metric tons. This is a 1.1% rise from 2022. The chart shows the industry’s emissions in the U.S.

fossil emissions in US 2023
Source: Stanford University
  • Specifically, oil and gas operations are responsible for around 15% of total energy-related emissions globally, equating to approximately 5.1 billion metric tons of CO₂ equivalent annually.

Moreover, the oil refining industry also plays a big role in GHG emissions. They rose from 1.38 billion metric tons in 2000 to 1.59 billion metric tons in 2021. ​

Methane, a potent GHG, is also a major concern in the oil and gas sector. Oil and gas operations in the United States release more than 6 million metric tons of methane each year. This worsens climate change because methane traps heat much better than CO₂. 

Burning fossil fuels for electricity and heat is the biggest source of global GHG emissions. It makes up 34% of the total. The industrial sector contributes 24% of global GHG emissions, primarily from on-site fossil fuel combustion for energy.

These stats highlight the urgent need for renewable energy. Companies must also adopt strict emission cuts to meet global climate goals.

A Precedent for Future Climate Activism?

This legal case could set a dangerous precedent. If other fossil fuel companies sue environmental groups, activism might become too expensive to continue. This would weaken one of the most powerful forces advocating for climate action.

Despite the setback, Greenpeace has vowed to continue its fight. The organization has filed an anti-SLAPP lawsuit against Energy Transfer in a Dutch court. They want to recover damages and legal costs from this case. The outcome of these legal battles could shape the future of climate advocacy and corporate accountability.

The $660 million verdict against Greenpeace is not just about free speech—it’s about the future of climate activism. As fossil fuel companies expand their legal tactics to counteract opposition, environmental organizations face increasing challenges in their fight for a sustainable future.

The post Greenpeace Faces $660 Million Verdict: A Turning Point for Climate Action? appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Donald Trump Uses Emergency Powers to Boost U.S. Critical Mineral (and Coal?) Production

Published

on

Donald Trump Uses Emergency Powers to Boost U.S. Critical Mineral (and Coal?) Production

President Donald Trump has signed an executive order to ramp up U.S. production of critical minerals. The order uses emergency powers under the Defense Production Act to increase financing, streamline permits, and encourage domestic mining and processing of minerals vital for national security and economic growth. 

The goal is to cut down on dependence on foreign suppliers, especially China. China leads the global supply chain for key minerals. The order has raised worries about its effect on the environment and how it matches climate goals.

What Are The Key Aspects of the Executive Order?

  • Defense Production Act for Critical Minerals

The executive order authorizes the use of the Defense Production Act (DPA) to provide financial support to U.S. mining and mineral processing projects. This includes loans and investments from the U.S. International Development Finance Corporation (DFC) and the Department of Defense. The goal is to speed up the production of key minerals. This includes lithium, cobalt, nickel, rare earth elements, and maybe coal.

  • Faster Permitting for Mining Projects

Trump’s order directs federal agencies to speed up the permitting process for new mining and processing facilities. The Department of the Interior has been tasked with prioritizing critical mineral production on federal lands. The administration wants to cut red tape. This will help private companies invest more in domestic mineral production.

  • Expanding the Scope of Critical Minerals

The order lets the National Energy Dominance Council add uranium, copper, potash, and gold to the list of critical minerals. Additionally, there is speculation that coal could be included. This can potentially lead to increased production of fossil fuels under the guise of national security.

Why Is the U.S. Expanding Mineral Production?

The U.S. gets 70% of its rare earth minerals from China. This makes the supply chain weak for important industries like defense, electronics, and renewable energy. China has also imposed export controls on key materials like gallium and germanium. This further increases the urgency for the U.S. to secure its own resources.

Critical minerals are key for military use, particularly antimony. They support missile systems, fighter jets, and advanced communications technology. By expanding domestic production, the U.S. aims to strengthen its defense capabilities and reduce the risk of supply chain disruptions.

Lastly, lithium, cobalt, and nickel are crucial for battery storage, electric vehicles (EVs), and renewable energy infrastructure. Boosting local production of these materials can speed up the clean energy shift and cut down on fossil fuel use.

Global Market Trends and U.S. Critical Mineral Production and Consumption

The global demand for critical minerals has been on the rise, driven by the transition to clean energy technologies. In 2023, lithium demand surged by 30%, while nickel, cobalt, graphite, and rare earth elements also saw significant increases. 

Investment in critical mineral mining grew by 10% in 2023; however, this was a slowdown compared to the 30% growth observed in 2022. This is partly due to declining prices putting pressure on producers.

investment in critical minerals 2023 IEA
Source: IEA

The United States has significant mineral resources but remains heavily dependent on imports for many critical minerals. According to the U.S. Geological Survey’s 2024 Mineral Commodity Summaries, the U.S. was 100% import-dependent for 15 nonfuel mineral commodities and over 50% import-dependent for 49 such commodities. 

America import reliance on critical minerals

For instance, aluminum consumption in 2024 reached 4.3 million metric tons, underscoring the nation’s reliance on external sources. For other minerals, refer to the following table for US 2023 consumption and production per USGS report. 

US critical minerals production and consumption 2023
Source: USGS 2024

Trump’s recent executive order targets several critical minerals, including:​

  • Rare Earth Elements (REEs): Essential for electronics, defense systems, and renewable energy technologies.
  • Lithium: Vital for battery production in electric vehicles and energy storage systems.​
  • Nickel: Used in stainless steel and battery manufacturing.​
  • Cobalt: Important for battery electrodes.
  • Graphite: Used in batteries and fuel cells.

Economic, Environmental, and Climate Implications

The EO has a significant impact on mining companies. Shares of U.S. mining companies surged following the announcement. 

MP Materials, a rare earth miner, saw its stock rise by 4.6%, while coal producer Peabody Energy gained more than 2%. However, Australian and Chinese mining companies experienced stock declines, reflecting concerns over reduced demand for imported minerals. 

The decision also has the potential to spur international trade conflicts. China and other major mineral-exporting nations may view this policy shift as a direct threat to their economic interests. This could lead to trade tensions and potential retaliatory measures, further complicating global supply chains.

Environmental Concerns and Climate Impacts

Mining and processing critical minerals contribute about 8% of global carbon emissions. Copper production emits 4.6 tonnes of CO₂ per tonne, while nickel ranges between 12 and 78 tonnes per tonne. However, these emissions do not negate clean energy benefits—EVs still produce half the lifecycle emissions of gasoline cars. Using low-carbon electricity can further lower these emissions. ​

Coal’s potential inclusion as a critical mineral raises concerns. Fossil fuels from federal lands accounted for nearly 25% of U.S. CO₂ emissions over a decade. Expanding mining on public lands risks habitat destruction and toxic contamination, with 22,500 abandoned mine sites already leaking harmful chemicals.

Securing critical minerals is key for national security and clean energy. Yet, experts also stress the need for sustainable practices. This includes recycling, improved mining tech, and carbon-cutting ideas. For example, using CO₂ to weaken rocks could make mining carbon-negative.

The Biden administration used the Defense Production Act before. This was to boost the production of battery materials in the U.S. The goal is to cut emissions and support renewable energy. In contrast, Trump’s order may list coal and other fossil fuels as critical minerals. This could slow down efforts for net-zero emissions and hurt global climate leadership. 

Expanding fossil fuel extraction on federal lands may worsen climate change, undermining progress toward emission reduction targets. ​

Conclusion: A Double-Edged Sword?

Trump’s executive order to boost critical mineral production is a significant policy shift that aims to reduce dependence on foreign sources, enhance national security, and support key industries. However, the inclusion of coal and the potential rollback of environmental safeguards raises concerns about its impact on climate goals.

As the U.S. moves forward with this strategy, it must find a balance between securing essential minerals and ensuring sustainable, environmentally responsible development. The outcome of this policy will shape not only the country’s economic future but also its role in global efforts to combat climate change.

The post Donald Trump Uses Emergency Powers to Boost U.S. Critical Mineral (and Coal?) Production appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com