Connect with us

Published

on

Last year was the hottest the Earth has experienced since the start of global temperature records in the mid-1800s – and likely for many thousands of years before.

The year 2024 was the first in which average global temperatures at the surface of the planet exceeded 1.5C above pre-industrial levels in the majority of leading datasets.

While reaching 1.5C in an individual year is not equivalent to a breach of the Paris Agreement’s 1.5C limit – which refers to long-term warming – it nevertheless indicates that the world is quickly approaching this internationally agreed threshold.

Here, Carbon Brief examines the latest data across the Earth’s oceans, atmosphere, cryosphere and surface temperature. (Use the links below to navigate between sections.)

Noteworthy findings from this 2024 review include…

  • Global surface temperatures: It was the warmest year on record by a large margin – at between 1.46C and 1.62C above pre-industrial levels across different temperature datasets and 1.55C in the World Meteorological Organization (WMO) synthesis.
  • Exceptional monthly temperatures: Global temperatures set a new record each month between January and June, extending a 15-month record-setting stretch which began in 2023.
  • Warmest over land: Global temperatures over the world’s land regions – where humans live and primarily experience climate impacts – were a record 2.3C above pre-industrial levels.
  • Warmest over oceans: Global sea surface temperatures set a new record at 1.1C above pre-industrial levels.
  • Ocean heat content: It was the warmest year on record for ocean heat content. In 2024, the oceans added 25 times more heat than all annual human energy use.
  • Regional warming: It was the warmest year on record in more than 100 countries – including China, Canada, Mexico, Germany, Brazil, Greece, Malaysia and South Korea – and in areas where a total of 3.3 billion people live.
  • Unusual warmth: The specific causes behind the exceptionally warm, record-setting temperatures in both 2023 and 2024 remain an open scientific question, with human-caused greenhouse gases, variability in El Niño and changes in the reflectivity of clouds all playing a role.
  • Comparison with climate models: Observations for 2024 are above the central estimate of climate model projections in the Intergovernmental Panel on Climate Change (IPCC) sixth assessment report, but well within the model range.
  • Heating of the atmosphere: It was the warmest year in the lower troposphere – the lowest part of the atmosphere – by a large margin.
  • Sea level rise: Sea levels reached new record highs, with notable acceleration over the past three decades.
  • Shrinking glaciers and ice sheets: Cumulative ice loss from the world’s glaciers and from the Greenland ice sheet reached a new record high in 2024, contributing to sea level rise.
  • Greenhouse gases: Concentrations reached record levels for carbon dioxide (CO2), methane and nitrous oxide.
  • Sea ice extent: Arctic sea ice saw its seventh-lowest minimum extent on record, while Antarctic sea ice was at the second-lowest level on record for much of the year.
  • Looking ahead to 2025: Carbon Brief predicts that global average surface temperatures in 2025 are likely to be the third warmest on record after 2024 and 2023, at around 1.4C above pre-industrial levels. However, large uncertainties remain given how exceptionally and unexpectedly warm the past two years have been.

Record warm surface temperatures

Global surface temperatures set a new record in 2024, surpassing the record set in 2023 by around 0.11C. It was unambiguously the warmest year since records began in the mid-1800s. 2024 was far warmer than any year prior to 2023, exceeding the previous record (set in 2016) by a massive 0.26C.

The figure below shows global surface temperature records from five different datasets: NASA, NOAA, the Met Office Hadley Centre/University of East Anglia’s (UEA) HadCRUT5, Berkeley Earth and Copernicus ERA5.

Other surface temperature datasets not shown – including JRA-3Q, the AIRS satellite data and the Japanese Meteorological Agency – also show 2024 as the warmest year on record.

Global surface temperature records, 1850-2024

Annual global average surface temperatures over 1850-2024. Data from NASA GISTEMP, NOAA GlobalTemp, Hadley/UEA HadCRUT5, Berkeley Earth and Copernicus ERA5. Temperature records are aligned over the 1981-2010 period and use the WMO approach to calculate warming relative to the pre-industrial (1850-1900) baseline. Chart by Carbon Brief.

Global surface temperature records can be calculated back to 1850, though some groups such as NASA GISTEMP choose to start their records in 1880 when more data was available.

Prior to 1850, records exist for some specific regions, but are not sufficiently widespread to calculate global temperatures with high accuracy (though work is ongoing to identify and digitise additional records to extend these further back in time).

These longer surface temperature records are created by combining ship- and buoy-based measurements of ocean sea surface temperatures with temperature readings of the surface air temperature from weather stations on land. (Copernicus ERA5 and JRA-3Q are an exception, as they use weather model-based reanalysis to combine lots of different data sources over time.)

Some differences between temperature records are apparent early in the record, particularly prior to 1900 when observations are more sparse and results are more sensitive to how different groups fill in the gaps between observations. However, there is strong agreement between the different temperature records for the period since 1970, as shown in the figure below.

Global surface temperature records, 1970-2024

Annual global average surface temperatures as in the prior chart, but showing the period from 1970-2024. Chart by Carbon Brief.

Global temperatures in 2024 clearly stand out as much warmer than anything that has come before, above even the exceptionally warm temperatures of 2023. This can be seen in the figure below from Berkeley Earth. Each shaded curve represents the annual average temperature for that year. The further that curve is to the right, the warmer it was.

The width of each year’s curve reflects the uncertainty in the annual temperature values, which is caused by factors such as changes in measurement techniques and the fact that some parts of the world have fewer measurement locations than others.

Global mean temperature anomaly and uncertainty in degrees C.
Global average surface temperatures for each year, relative to 1850-1900, with their respective uncertainties (width of the curves) from the Berkeley Earth surface temperature record. Figure from Berkeley Earth.

The year 2024 was the warmest on record for both the world’s land and ocean regions. Global average land temperatures were around 2.3C above pre-industrial levels in the Berkeley Earth dataset, while global ocean temperatures exceeded 1.1C.

The figure below shows land (red) and ocean (blue) temperatures along with their respective confidence intervals, relative to pre-industrial levels, in the Berkeley Earth surface temperature record.

Land and ocean temperatures 1850-2024
Land and ocean temperature rise since the pre-industrial 1850-1900 period. Figure from Berkeley Earth.

Global land regions – where the global human population lives – has been warming around 70% faster than the oceans – and 40% faster than the global average in the years since 1970.

2024 started off quite hot, boosted by an El Niño event that peaked at the start of the year. The first six months of the year set new all-time monthly records, extending a run of 15 record-setting months that started in July 2023. The latter part of the year remained warm, and was only slightly exceeded by the exceptionally hot temperatures experienced in the second half of 2023.

The figure below shows each month of 2024 in black, compared to all prior years since 1940. Each year is coloured based on the decade in which it occurred, with the clear warming over time visible, as well as the margin by which both 2023 and 2024 exceeded past years.

Monthly global temperature anomalies

Monthly global surface temperatures for each year since 1940, with anomalies shown relative to the pre-industrial 1850-1900 period using data from Copernicus/ECMWF ERA5. Chart by Carbon Brief.

First year above 1.5C in most records

In the 2015 Paris Agreement, countries agreed to work to limit global temperatures to “well below 2C” and to pursue efforts to limit the temperature increase to 1.5C above pre-industrial levels”.

While the agreement did not specifically define how to measure the breach of these climate targets, the goals have been widely interpreted (including by the IPCC) to refer to temperature averages over 20 years.

In other words, the limits refer to long-term warming, rather than an individual year that includes the short-term influence of natural fluctuations in the climate, such as El Niño.

However, a single year exceeding 1.5C still represents a grim milestone and a sign that the world is quickly approaching the target. And, in the majority of datasets in 2024, global surface temperatures exceeded 1.5C for the first time. (In the Berkeley Earth dataset, 2023 was actually the first year above 1.5C.)

Temperature record 2024 temperatures relative to preindustrial
NASA GISTEMP 1.47C
Hadley/UAE HadCRUT5 1.53C
NOAA GlobalTemp 1.46C
Berkeley Earth 1.62C
Copernicus/ECMWF 1.60C
JRA-3Q 1.59C
Japanese Meteorological Agency 1.52C

Global temperature anomalies for 2024 relative to pre-industrial temperatures (1850-1900).

NOAA and NASA were the only organisations to report global temperatures below 1.5C – and by just a few hundredths of a degree. Berkeley Earth, Copernicus and JRA-3Q all estimated that temperatures were around 1.6C.

This year, the World Meteorological Organization (WMO) provided a synthesis of the different global surface temperature records – incorporating NASA, Hadley, NOAA, Berkeley, Copernicus and JRA-3Q data – which is a useful tool to provide a best-estimate across the different groups. It finds that 2024 was the first year above 1.5C, coming in at 1.55C compared to 1.45C in 2023.

The figure below shows various temperature records along with their published uncertainty range (where available), alongside the WMO synthesis estimate.

How warm was 2024? Global average temperatures in 2024 relative to the 1850-1900 average
Global surface temperatures in 2024 from each group and the WMO synthesis, with anomalies shown relative to the pre-industrial 1850-1900 period and uncertainties plotted when available. Figure from Berkeley Earth.

As noted earlier, these datasets are nearly identical over the past 50 years. Differences in warming relative to pre-industrial levels emerge earlier in the record, particularly prior to 1900 when observations are more sparse and the choice of how to fill in the gaps between observations has a large impact on the resulting temperature estimate.

The figure below shows how different temperature records look if each is calculated relative to its own pre-industrial baseline, rather than using an average pre-industrial baseline as shown in the prior section. Focusing on warming since pre-industrial levels – rather than more recent warming – magnifies differences between groups, with the variation in warming across groups largely due to the most uncertain early part of the record.

Global warming 1850 to 2024 (95% confidence interval shown for Berkeley Earth temperature anomalies relative to 1850-1900 average)
Annual global surface temperatures since 1850, with anomalies shown relative to the pre-industrial 1850-1900 period for each dataset. Figure from Berkeley Earth.

Ocean heat content sets another record

Last year was the warmest on record for the heat content of the world’s oceans. Ocean heat content (OHC) has increased by around 484 zettajoules – a billion trillion joules – since the 1940s. The heat increase in 2024 alone compared to 2023 – about 16 zettajoules – is around 25 times as much as the total energy produced by all human activities on Earth in 2023 (the latest year in which global primary energy statistics are available).

Human-emitted greenhouse gases trap extra heat in the atmosphere. While some of this warms the Earth’s surface, the vast majority – around of 93% – goes into the oceans. About two-thirds of this accumulates in the top 700 metres, but some also ends up in the deep oceans.

The figure below shows annual OHC estimates between 1950 and present for the upper 700 metres (light blue shading) and 700-2,000 metres (dark blue) of the ocean.

Global ocean heat content, 1950-2024

Annual global ocean heat content (in zettajoules – billion trillion joules, or 10^21 joules) for the 0-700 metre and 700-2,000 metre layers. Data from Cheng et al. (2024). Chart by Carbon Brief.

In many ways, OHC represents a much better measure of climate change than global average surface temperatures, because it is where most of the extra heat ends up and is much less variable on a year-to-year basis than surface temperatures.

The graph above shows a distinct acceleration in OHC after 1991, matching the increased rate of greenhouse gas emissions and other radiative forcing elements over the past few decades.

A year of climate extremes

While media coverage of 2024 temperatures has largely focused on the global average, many different regions of the planet experienced climate extremes.
The figure below shows global temperature anomalies in 2024 across the world, with the red areas warmer than the baseline period (1951-80) used by Berkeley Earth and the (few) blue areas experiencing cooler temperatures.

2024 global heat map, relative to 1951-1980 averages
Surface temperature anomalies for 2024 from Berkeley Earth. Note that Berkeley uses a 1951-80 baseline here to show anomalies.

Approximately 3.3 billion people – 40% of Earth’s population – live in places that experienced their warmest year on record in 2024. This was concentrated in Asia, South and Central America, Africa, and Eastern Europe. It also includes two-thirds of the population of China, as well as most of the population of Brazil, Nigeria, Ethiopia, Mexico and one-third of the population of the US.

The figure below highlights regions of the planet that experienced their top-five warmest (red shading) or coldest (blue) temperatures on record in 2024. Overall, around 24% of the planet set a new record, including 32% of the land and 21% of the ocean. No location on the planet experienced record cold temperatures (or even top-five record cold temperatures) for the year as a whole.

Annual average temperature rankings in 2024
Regions of the world among the five warmest (reds) of five coolest (blues) on record for average annual temperatures in 2024. Figure from Berkeley Earth.

In 2024, more than 100 countries saw their warmest year on record, as listed in the table below.

Africa Asia Europe North America Oceania South America
Algeria
Cameroon
Central African Republic
Chad
Comoros
Democratic Republic of the Congo
Djibouti
Equatorial Guinea
Eritrea
Ethiopia
Gabon
Ghana
Guinea
Guinea-Bissau
Ivory Coast
Kenya
Liberia
Libya
Malawi
Mozambique
Republic of the Congo
Sao Tome and Principe
Seychelles
Sierra Leone
Somalia
South Sudan
Togo
Tunisia
Uganda
Zambia
Zimbabwe
Brunei
Cambodia
China
Indonesia
Laos
Malaysia
Mongolia
North Korea
Oman
Palau
Philippines
Singapore
South Korea
Sri Lanka
Taiwan
Thailand
Vietnam
Yemen
Albania
Austria
Belarus
Bosnia and Herzegovina
Bulgaria
Croatia
Cyprus
Czechia
Germany
Greece
Hungary
Italy
Kosovo
Liechtenstein
Lithuania
Malta
Moldova
Montenegro
Netherlands
Poland
San Marino
Republic of Serbia
Romania
Slovakia
Slovenia
Ukraine
Antigua and Barbuda
Barbados
Belize
Canada
Dominica
El Salvador
Grenada
Guatemala
Haiti
Honduras
Jamaica
Mexico
Nicaragua
Saint Kitts and Nevis
Saint Lucia
Saint Vincent and the Grenadines
Trinidad and Tobago
Federated States of Micronesia
Fiji
Kiribati
Samoa
Solomon Islands
Brazil
Colombia
Guyana
Paraguay
Suriname
Venezuela

While the contiguous US saw record warmth, 2024 was the country’s second-warmest year on record once Alaska and Hawaii temperatures are included.

Furthermore, the continents of North America, South America, Asia, Africa and Europe each set new annual average records in 2024.

Untangling the drivers of spiking global temperatures

Global temperatures spiked in both 2023 and 2024 in a manner that scientists had not anticipated. Projections of 2023 temperatures were far below what actually occurred, and even 2024 projections ended up being on the lower end, despite incorporating 2023’s extremes.

The figure below shows estimates by four different groups that provided temperature predictions for the year prior to any data being collected – the UK Met Office, NASA’s Dr Gavin Schmidt, Berkeley Earth and Carbon Brief’s own estimate.

Comparing different 2024 temperature projections

Temperature predictions for 2024 from the UK Met Office, NASA’s Dr Gavin Schmidt, Berkeley Earth, and Carbon Brief relative to pre-industrial (1850-1900) temperatures and compared to the historical average of six different datasets produced by the WMO. Chart by Carbon Brief.

Unusually high global temperatures in 2023 and 2024 have sparked a slew of new studies by scientists attempting to explain the excessive heat. A range of possible causes has been proposed, including:

  • The possibility that El Niño behaved unusually as it followed a rare extended triple-dip La Niña event. A 2024 paper found that when El Niño followed an extended La Niña in climate model simulations, it produced a temperature spike commensurate to what was observed in 2023-24 around 10% of the time.
  • A decline in emissions of sulphur dioxide, reducing atmospheric aerosol concentrations and “unmasking” additional warming from past human greenhouse gas emissions. Multiple different papers have looked at the effects of a 2020 low-sulphur marine shipping fuel regulation, and ongoing research is looking at the effects of a sharp drop in sulphur emissions in China.
  • An unusual 2022 eruption of the Hunga-Tonga Hunga Ha’apai volcano that put around 150m tonnes of water vapour into the stratosphere, as well as some sulphur dioxide. Papers have been mixed on whether the water vapour warming or the sulphur dioxide cooling would be larger.
  • Other factors include an uptick in the 11-year solar cycle, and unusually low Saharan dust concentrations in early summer 2023.

One notable paper, published in the journal Science in early December 2024, found a substantial decline in reflective low-cloud cover in the northern mid-latitudes and tropics. They noted that this has the effect of increasing the amount of solar radiation that reaches the Earth’s surface and is re-radiated as heat.

The finding by itself does not reveal what caused a decline in cloud reflectivity, and the authors note that it could be a combination of natural variability, declining atmospheric aerosol concentrations associated with falling sulfur emissions, or – more worryingly – a sign of a strong positive cloud feedback associated with warming.

The figure below, created by Dr Robert Rohde at Berkeley Earth, synthesises the main drivers of temperature change over the past decade. It includes estimates of the warming contribution from human greenhouse gas emissions, El Niño and La Niña, changes in the solar cycle, the Hunga-Tonga eruption, and the 2020 low-sulphur marine fuel regulations. For the latter two elements, it includes a range of six published estimates of the eruption and five published estimates of the low sulphur fuel rules.

Factors affecting global temperature – last 10 years
Illustration of contributing factors driving global surface temperatures over the past decade. Each line for the Hunga Tonga eruption and marine fuel pollution reduction reflects a different published estimate. Figure from Berkeley Earth.

Over the longer-term, human emissions of CO2 and other greenhouse gases alongside planet-cooling aerosols are the main driver of global temperatures. Global temperatures have risen by more than 1.3C since pre-industrial times as a result of human activity.

However, on top of long-term warming, global temperatures vary year-to-year by up to 0.2C.

These variations are primarily driven by El Niño and La Niña events that redistribute heat between the atmosphere and oceans. However, other factors such as volcanic eruptions, the 11-year solar cycle and changes in short-lived climate forcers can influence year-to-year temperature changes.

The figure below shows the El Niño (red shading) and La Niña (blue) conditions over the past 40 years (collectively referred to as the El Niño-Southern Oscillation, or “ENSO”). While not unprecedented, the extended La Niña conditions since the latter half of 2020 have extended for an unusually long period of time.

Historical Nino 3.4 sea surface temperature anomaly
Niño 3.4 sea surface temperature anomalies relative to the ocean average, for 1982-2024. Deviations below 0.5C and above 0.5C are generally used to determine La Niña and El Niño conditions, respectively. Figure from International Research Institute (IRI) at Columbia University.

Carbon Brief has used this historical relationship between ENSO conditions and temperature to effectively remove the effects of El Niño and La Niña events from global temperatures, as shown in the figure below.

This analysis indicates that El Niño boosted global temperatures in 2024 by around 0.16C compared to the estimate of global temperatures with both El Niño and La Niña events removed. This was a much larger effect than the 0.04C estimated for 2023, when El Niño emerged relatively late in the year and peaked in November.

Effects of El Nino and La Nina on global temperatures

Annual global average surface temperatures from the WMO average of six different datasets , as well as Carbon Brief’s estimate of global temperatures with the effect of El Niño and La Niña (ENSO) events removed using the Foster and Rahmstorf (2011) approach. Chart by Carbon Brief.

However, this approach – which relies on a historical lag of around three months between peak ENSO conditions in the tropical Pacific and global surface temperature response – may not fully reflect El Niño effects on 2023. As discussed earlier, the fact that El Niño occurred on the heels of unusually-long La Niña conditions may have contributed to an earlier global temperature response than has been seen in other recent strong El Niño events.

Observations broadly in line with climate model projections

Climate models provide physics-based estimates of future warming given different assumptions about future emissions, greenhouse gas concentrations and other climate-influencing factors.

Here, Carbon Brief examines a collection of climate models – known as CMIP6 – used in the 2021 science report of the IPCC’s sixth assessment. In CMIP6, model estimates of temperatures prior to 2015 are a “hindcast” using known past climate influences, while temperatures projected from 2015 onward are a “forecast” based on an estimate of how things might change.

The figure below shows how observations compare to the full ensemble of 37 CMIP6 models (under the middle-of-the-road SSP2-4.5 emissions scenario for future projections). The blue line represents the average of all the models and the grey areas showing the 5th to 95th percentile range. Observational temperatures are plotted on top of the climate model data, with individual observational records represented by red lines of different shades.

The chart illustrates how observations have generally been below the model average over the past two decades and are slightly above model average in 2024.

Global surface temperatures 1950-2024: CMIP6 models and observations

Annual global average surface temperatures from CMIP6 models and observations between 1950 and 2030 (through 2024 for observations). Models use the SSP2-4.5 scenario after 2015. Anomalies plotted with respect to a 1981-2010 baseline. Chart by Carbon Brief.

The CMIP6 ensemble is marginally more challenging for this comparison than past generations of CMIP because a subset of its models have unrealistically high climate sensitivity and they reproduce historical observations poorly. To account for this, rather than simply averaging all the models – as had been done in prior assessments – the IPCC employed an approach that effectively weights models by their performance. As a result, the models align better with the range of climate sensitivity derived from multiple different lines of evidence.

In the chart below, the blue line shows the average of 22 different models whose transient climate response (TCR) falls within the IPCC’s “likely” range (which results in temperature projections nearly identical to the IPCC-assessed warming). The grey area shows the 95% (two standard deviation) range of the TCR-screened model projections.

Global surface temperatures 1950-2024: TCR-screened CMIP6 models and observations

CMIP6 models compared to observations as in the prior chart, but models are screened to only include those models with a transient climate response (TCR) in-line with the IPCC’s “likely” range as discussed in Hausfather et al (2022). Anomalies plotted with respect to a 1981-2010 baseline. Chart by Carbon Brief.

The chart reveals that observed global surface temperatures (red lines) are further above the multimodal average, but remain well within the range of TCR-screened model runs.

This might be surprising given the focus on 2023 and 2024 being unusually warm. However, climate models broadly expect an acceleration of warming in the current period in a scenario like SSP2-4.5 where emissions of CO2 and other greenhouse gases continue to modestly increase, but emissions of planet-cooling aerosols like sulphur dioxide are rapidly reduced.

Record atmospheric temperatures

In addition to surface measurements over the world’s land and oceans, satellite microwave sounding units have been providing estimates of temperatures at various layers of the atmosphere since 1979.

The lowest layer of the atmosphere that satellite microwave units provide temperature estimates for is the lower troposphere. This data reflects temperatures a few kilometres above the Earth’s surface. It reveals a pattern of warming in the lowest troposphere that is similar – though not identical – to surface temperature changes.

The records produced by Remote Sensing Systems (RSS), the University of Alabama, Huntsville (UAH) and NOAA show 2024 as the warmest year on record in the lower troposphere. The chart below shows the three records for the lower troposphere.

Satellite lower tropospheric temperature records

Global average lower-troposphere temperatures from RSS version 4 (blue), UAH version 6 (red) and NOAA STAR version 5 (grey) for the period from 1979-2024, relative to a 1981-2010 baseline. Chart by Carbon Brief.

The lower troposphere tends to be influenced more strongly by El Niño and La Niña events than the surface. Therefore, satellite records show correspondingly larger warming or cooling spikes during these events. This explains why the year-on-year increase in lower-troposphere temperature – of around 0.3C – seen in 2024 is larger than the ~0.1C increase in surface records.

The lower-tropospheric temperature records show large differences after the early 2000s. RSS shows an overall rate of warming quite similar to surface temperature records, while UAH and NOAA show considerably slower warming in recent years than has been observed on the surface.

Greenhouse gas concentrations reach new highs

Greenhouse gas concentrations reached a new high in 2024, driven by human emissions from fossil fuels, land use and agriculture.

Three greenhouse gases – CO2, methane (CH4) and nitrous oxide (N2O) – are responsible for the bulk of additional heat trapped by human activities. CO2 is by far the largest factor, accounting for roughly 42% of the increase in global surface temperatures since the pre-industrial era (1850-1900).

Methane accounts for 28%, while nitrous oxide accounts for around 5%. The remaining 25% comes from other factors including carbon monoxide, black carbon and halocarbons, such as CFCs.

Human emissions of greenhouse gases have increased atmospheric concentrations of CO2, methane and nitrous oxide to their highest levels in at least a few million years – if not longer.

The figure below shows concentrations of these greenhouse gases – in parts per million (ppm) for CO2 and parts per billion (ppb) for methane and nitrous oxide – from the early 1980s through to October 2024 for CO2 and September 2024 for CH4 and N2O (the most recent data currently available).

Global greenhouse gas concentrations

Global concentrations of CO2, methane (CH4) and nitrous oxide (N2O). Based on data from NOAA’s Earth Systems Research Laboratory. Note that the y-axes do not start at zero. Chart by Carbon Brief.

Sea level rise is speeding up

Modern-day sea levels have risen to a new high, due to a combination of melting land ice (such as glaciers and ice sheets), the thermal expansion of water as it warms and changes in land water storage.

In recent years, there have been larger contributions to sea level rise from melting ice sheets and glaciers, as warmer temperatures accelerate ice sheet losses in Greenland and Antarctica.

Since the early 1990s, the increase in global sea level has been estimated using altimeter data from satellites. Earlier global sea levels have been reconstructed from a network of global tide gauge measurements. This allows researchers to estimate how sea level has changed since the late 1800s.

The chart below shows five different modern sea level rise datasets (blue lines), along with satellite altimeter measurements as assessed by NASA (in black) after 1993. (As sea level rise data has not yet been released for the whole year, the 2024 value is estimated based on data through to October.)

Global mean sea level rise between 1880 and 2024

Global average sea level rise reconstructed from tide gauge data between 1880 and 2024 from Frederikse et al 2020, Dangendorf et al 2019, Hay et al 2015, Church and White 2011, and Palmer et al 2021. Satellite altimeter data from 1993 (black) to present is taken from NASA. Chart by Carbon Brief.

Sea levels have risen by over 0.2 metres (200mm) since 1900. While sea level rise estimates mostly agree in recent decades, larger divergences are evident before 1980. There is also evidence of accelerating sea level rise over the post-1993 period when high-quality satellite altimetry data is available. (See Carbon Brief’s explainer on how climate change is accelerating sea level rise.)

Shrinking glaciers and ice sheets

A significant portion of global sea level rise is being driven by melting glaciers on land. Scientists measure the mass of glaciers around the world using a variety of remote-sensing techniques, as well as through GRACE measurements of the Earth’s gravitational field. The balance between snow falling on a glacier and ice loss through melting and the breaking off – or “calving” – of icebergs determines if glaciers grow or shrink over time.
The World Glacier Monitoring Service is an international consortium that tracks more than 130 different glaciers in 19 different regions around the world. The figure below shows the change in global average glacier mass from 1950 through to the end of 2023. (2024 values are not yet available.) Note that glacier melt is reported in metres of water equivalent, which is a measure of how much mass has been lost on average.

Global glacier melt, 1950-2023

Global average glacier melt over the 1950-2023 period from the World Glacier Monitoring Service, in metres of water equivalent. Carbon Brief.

Greenland ice sheets have become a larger contributor to sea level rise in recent years due to accelerating loss of mass. The year 2024 was the 28th in a row where Greenland lost ice overall, with 80bn tonnes of ice lost over the 12 months from September 2023 to August 2024. Greenland last saw an annual net gain of ice in 1996.

The figure below shows the cumulative mass balance change – that is, the net ice loss – from Greenland between 1970 and October 2024. The authors find that Greenland has lost around 6tn tonnes of ice over the past 50 years – more than 700 tonnes lost per person for every person on the planet.

Greenland ice sheet mass balance, 1970-2024

Cumulative ice loss from Greenland in billion metric tonnes (gigatonnes) between 1970 and 2024 from Mankoff et al 2021, updated through December 2024. Chart by Carbon Brief.

Near-record low Antarctic sea ice extent

Arctic sea ice was at the low end of the historical (1979-2010) range for most of 2024, but did not set any new all-time low records apart from a few individual days at the end of the year.

The summer minimum extent – the lowest recorded level for the year – was the seventh-lowest since records began in the late 1970s.

Antarctic sea ice, on the other hand, was the second lowest on record – after 2023 – for much of the year. Taken together, 2023 and 2024 Antarctic sea ice extent was “way outside anything we have witnessed in our satellite record for their winter months”, an expert told Carbon Brief in October last year.

While long-term trends in Antarctic sea ice have been ambiguous in the past (unlike in the Arctic where there is a consistent long-term decline), there is increasing evidence that human-driven warming is starting to drive significant loss of sea ice in the region.

The figure below shows both Arctic (red line) and Antarctic (blue line) sea ice extent for each day of the year, along with how it compares to the historical range (corresponding shading).

Arctic and Antarctic sea ice in 2024

Arctic and Antarctic daily sea ice extent from the US National Snow and Ice Data Center. The bold lines show daily 2024 values, the shaded area indicates the two standard deviation range in historical values between 1979 and 2010. The dotted black lines show the record lows for each pole. Chart by Carbon Brief.

Looking ahead to 2025

There is reason for caution when estimating likely temperatures for 2025. In 2023, temperatures were significantly higher than predictions made at the start of the year, while 2024 temperatures were towards the high end of annual predictions.

At the same time, there is strong reason to expect that 2025 will be cooler than 2024. As noted earlier, 2024 temperatures were boosted by more than 0.1C by a strong El Niño event that has largely faded by the start of 2025. While global land temperatures remain quite elevated, sea surface temperatures have begun to fall in recent months, and weak La Niña conditions are starting to develop in the tropical Pacific.

It seems unlikely that a strong La Niña will develop in 2025, and it is quite possible that the world remains in ENSO neutral conditions with no formal La Niña being declared for the first half of the year. There is even a small chance that the world will re-enter El Niño conditions by the latter part of 2025 – though most models forecast neutral conditions to persist, as shown in the figure below.

Model predictions of ENSO from Dec 2024
El Niño Southern Oscillation (ENSO) forecast models for overlapping three-month periods in the Niño3.4 region (September, October, November – SON – and so on) for the end of 2024 and then into the spring and summer of 2025. Credit: CPC/IRI ENSO forecast.

There have been four published predictions – from the UK Met Office, NASA’s Dr Gavin Schmidt, Berkeley Earth and Carbon Brief (in this article) – of what temperatures might look like in 2025.

The figure below shows the four different 2025 predictions compared to the average of six different temperature records (NASA, NOAA, Hadley, Berkeley, Copernicus and the Japanese JRA-3Q reanalysis) used by the World Meteorological Organization (WMO). These have been “normalised” to show 2025 warming relative to 2024 in the WMO dataset. This is to remove any differences in predictions due to divergences in the baselines used by different temperature records.

Carbon Brief’s prediction of likely 2025 temperatures is based on a statistical model using the average temperature of the past year, the latest monthly temperature and projections of ENSO conditions over the first three months of 2025.

Comparing different 2025 temperature projections

Temperature projections for 2025 from the UK Met Office, NASA’s Dr Gavin Schmidt, Berkeley Earth and Carbon Brief, relative to pre-industrial (1850-1900) temperatures and compared to the historical average of six different datasets produced by the WMO. Chart by Carbon Brief.

The Met Office, Dr Schmidt, Berkeley Earth and Carbon Brief estimates all have 2025 most likely ending up as the third-warmest year on record, after 2024 and 2023. However, it is still possible that it could be as high as the second-warmest year or as low as the sixth-warmest year, depending on how global temperatures evolve in the coming months.

Against a 1880-99 pre-industrial baseline, the central estimate of all four forecasts for 2025 is around 1.4C warming, with the world relatively unlikely to top 1.5C again next year.

Ultimately, what matters for the climate is not the leaderboard of individual years. Rather, it is the long-term upward trend in global temperatures driven by human emissions of greenhouse gases. Until the world reduces emissions down to net-zero, the planet will continue to warm.

If global emissions remain on the current trajectory, the world will likely firmly pass 1.5C in the late 2020s or early 2030s, as shown in the figure below.

The world will likely firmly exceed 1.5C in the coming years without rapid emissions reductions

Annual global average surface temperatures from the composite average (black dots) along the 30-year LOWESS fit (red line), combined the AR6 assessed warming projection for SSP2-4.5 as published and without any baseline alignment. Chart by Carbon Brief.

The post State of the climate: 2024 sets a new record as the first year above 1.5C appeared first on Carbon Brief.

State of the climate: 2024 sets a new record as the first year above 1.5C

Continue Reading

Greenhouse Gases

Permitting reform: A major key to cutting climate pollution 

Published

on

Graphic shows head shots of a white man with short salt and pepper hair and a white woman with glasses, both smiling

Permitting reform: A major key to cutting climate pollution

By Dana Nuccitelli, CCL Research Coordinator

Permitting reform has emerged as the biggest and most important clean energy and climate policy area in the 119th Congress (2025-2026). 

To make sure every CCL volunteer understands the opportunities and challenges ahead, CCL Vice President of Government Affairs Jennifer Tyler and I recently provided two trainings about the basics of permitting reform and understanding the permitting reform landscape.

These first introductory trainings set the stage for the rest of an ongoing series, which will delve into the details of several key permitting reform topics that CCL is engaging on. Read on for a recap of the first two trainings and a preview of coming attractions.

Permitting reform basics

Before diving into the permitting reform deep end, we need to first understand the fundamentals of the topic: what is “permitting”? What problems are we trying to solve with permitting reform? Why is it a key climate solution?

In short, a permit is a legal authorization issued by a government agency (federal and/or state and/or local) that allows a specific activity or project to proceed under certain defined conditions. The permitting process ensures that public health, safety, and the environment are protected during the construction and operation of the project.

But the permitting process can take a long time, and in some cases it’s taking so long that it’s unduly slowing down the clean energy transition. “Permitting reform” seeks to make the process more efficient while still ensuring that public health, safety, and the environment are protected.

There are a lot of factors involved in the permitting reform process, including environmental laws, limitations on lawsuits, and measures to expedite the building of electrical transmission lines that are key for expanding the capacity of America’s aging electrical grid in order to allow us to connect more clean energy and meet our energy affordability and security and climate needs.

But if we can succeed in passing a good, comprehensive permitting reform package through Congress, it could unlock enough climate pollution reductions to offset what we lost from this year’s rollback of the Inflation Reduction Act’s clean energy investments. Permitting reform is the big climate policy in the current session of Congress.

Watch the Full Training Here

Understanding the permitting reform landscape

In the second training of this series, we sought to understand the players and the politics in the permitting reform space, learn about the challenges involved, and explore CCL’s framework and approach for weighing in on this policy topic.

Permitting reform has split some traditional alliances along two differing theories about how to best address climate change. Some groups with a theory of change relying on using permitting and lawsuits to slow and stop fossil fuel infrastructure are least likely to be supportive of a permitting reform effort. Groups like CCL that recognize the importance of quickly building lots of clean, affordable energy infrastructure are more supportive of permitting reform measures.

The subject has created some strange bedfellows, because clean energy and fossil fuel companies and organizations all want efficient permitting for their projects, and hence all tend to support permitting reform. For CCL, the key question is whether a comprehensive permitting reform package will be a net benefit to clean energy or the climate — and that’s what we’re working toward.

The two major political parties also have different priorities when it comes to permitting reform. Republicans tend to view it through a lens of reducing government red tape, ensuring that laws and regulations are only used for their intended purpose, and achieving energy affordability and security. Democrats prioritize building clean energy faster to slow climate change, addressing energy affordability, and protecting legacy environmental laws and community engagement.

Watch the Full Training Here

As we discussed in the training, there are a number of key concepts that will require compromise from both sides of the aisle in order to reach a durable bipartisan permitting reform agreement. We’ll delve into the details of these in these upcoming trainings:

The Challenge of Energy Affordability and Security

First, with support from CCL’s Electrification Action Team, on February 5 I’ll examine what’s behind rising electricity rates and energy insecurity in the U.S. and how we can solve these problems. Electrification is a key climate solution in the transition to clean energy sources. But electricity rates are rising fast and face surging demand from artificial intelligence data centers. Permitting reform can play a key role in addressing these challenges.

Transmission Reform and Key Messages

Insufficient electrical transmission capacity is acting as a bottleneck slowing down the deployment of new clean energy sources in the U.S. Reforming cumbersome transmission permitting processes could unlock billions of tons of avoided climate pollution while improving America’s energy security and affordability. In this training on March 5, Jenn and I will dive into the details of the key clean energy and climate solution that is transmission reform, and the key messages to use when lobbying our members of Congress.

Build Faster and Key Messages

Clean energy projects often encounter long, complex permitting steps that slow construction and raise costs. Practical permitting reforms can help ensure that good projects move forward faster while upholding environmental and community protections. In this training on March 19, Jenn and I will examine permitting reforms to build energy infrastructure faster, some associated tensions and compromises that they may involve, and key messages for congressional offices.

Fair Permitting Certainty

Presidents from both political parties have taken steps to interfere with the permitting of certain types of energy infrastructure that they oppose. These executive actions create uncertainty that inhibits the development of new energy sources in the United States. For this reason, ensuring fair permitting certainty is a key aspect of permitting reform that enjoys bipartisan support. In this training on April 2, Jenn and I will discuss how Congress can ensure certainty in a permitting reform package, and key messages for congressional offices.

Community Engagement and Key Messages

It’s important for energy project developers to engage local communities in order to address any local concerns and adverse impacts that may arise from new infrastructure projects. But it’s also important to strike a careful balance such that community input can be heard and addressed in a timely manner without excessively slowing new clean energy project timelines. In this training on May 7, Jenn and I will examine how community engagement may be addressed in the permitting reform process, and key messages for congressional offices.

We look forward to nerding out with you in these upcoming advanced and important permitting reform trainings! 🤓

Want to take action now? Use our online action tool to call Congress and encourage them to work together on comprehensive permitting reform.

The post Permitting reform: A major key to cutting climate pollution  appeared first on Citizens' Climate Lobby.

Permitting reform: A major key to cutting climate pollution 

Continue Reading

Greenhouse Gases

DeBriefed 30 January 2026:  Fire and ice; US formally exits Paris; Climate image faux pas

Published

on

Welcome to Carbon Brief’s DeBriefed.
An essential guide to the week’s key developments relating to climate change.

This week

Fire and ice

OZ HEAT: The ongoing heatwave in Australia reached record-high temperatures of almost 50C earlier this week, while authorities “urged caution as three forest fires burned out of control”, reported the Associated Press. Bloomberg said the Australian Open tennis tournament “rescheduled matches and activated extreme-heat protocols”. The Guardian reported that “the climate crisis has increased the frequency and severity of extreme weather events, including heatwaves and bushfires”.

WINTER STORM: Meanwhile, a severe winter storm swept across the south and east of the US and parts of Canada, causing “mass power outages and the cancellation of thousands of flights”, reported the Financial Times. More than 870,000 people across the country were without power and at least seven people died, according to BBC News.

COLD QUESTIONED: As the storm approached, climate-sceptic US president Donald Trump took to social media to ask facetiously: “Whatever happened to global warming???”, according to the Associated Press. There is currently significant debate among scientists about whether human-caused climate change is driving record cold extremes, as Carbon Brief has previously explained.

Around the world

  • US EXIT: The US has formally left the Paris Agreement for the second time, one year after Trump announced the intention to exit, according to the Guardian. The New York Times reported that the US is “the only country in the world to abandon the international commitment to slow global warming”.
  • WEAK PROPOSAL: Trump officials have delayed the repeal of the “endangerment finding” – a legal opinion that underpins federal climate rules in the US – due to “concerns the proposal is too weak to withstand a court challenge”, according to the Washington Post
  • DISCRIMINATION: A court in the Hague has ruled that the Dutch government “discriminated against people in one of its most vulnerable territories” by not helping them to adapt to climate change, reported the Guardian. The court ordered the Dutch government to set binding targets within 18 months to cut greenhouse gas emissions in line with the Paris Agreement, according to the Associated Press.
  • WIND PACT: 10 European countries have agreed a “landmark pact” to “accelerate the rollout of offshore windfarms in the 2030s and build a power grid in the North Sea”, according to the Guardian
  • TRADE DEAL: India and the EU have agreed on the “mother of all trade deals”, which will save up to €4bn in import duty, reported the Hindustan Times. Reuters quoted EU officials saying that the landmark trade deal “will not trigger any changes” to the bloc’s carbon border adjustment mechanism.
  • ‘TWO-TIER SYSTEM’: COP30 president André Corrêa do Lago believes that global cooperation should move to a “two-speed system, where new coalitions lead fast, practical action alongside the slower, consensus-based decision-making of the UN process”, according to a letter published on Tuesday, reported Climate Home News

$2.3tn

The amount invested in “green tech” globally in 2025, marking a new record high, according to Bloomberg.


Latest climate research

  • Including carbon emissions from permafrost thaw and fires reduces the remaining carbon budget for limiting warming to 1.5C by 25% | Communications Earth & Environment 
  • The global population exposed to extreme heat conditions is projected to nearly double if temperatures reach 2C | Nature Sustainability
  • Polar bears in Svalbard – the fastest-warming region on Earth – are in better condition than they were a generation ago, as melting sea ice makes seal pups easier to reach | Scientific Reports

(For more, see Carbon Brief’s in-depth daily summaries of the top climate news stories on Monday, Tuesday, Wednesday, Thursday and Friday.)

Captured

EV sales just overtook petrol cars in EU for the first time. Chart shows monthly new passenger card registrations in the EU.

Sales of electric vehicles (EVs) overtook standard petrol cars in the EU for the first time in December 2025, according to new figures released by the European Automobile Manufacturers’ Association (ACEA) and covered by Carbon Brief. Registrations of “pure” battery EVs reached 217,898 – up 51% year-on-year from December 2024. Meanwhile, sales of standard petrol cars in the bloc fell 19% year-on-year, from 267,834 in December 2024 to 216,492 in December 2025, according to the analysis.

Spotlight

Looking at climate visuals

Carbon Brief’s Ayesha Tandon recently chaired a panel discussion at the launch of a new book focused on the impact of images used by the media to depict climate change.

When asked to describe an image that represents climate change, many people think of polar bears on melting ice or devastating droughts.

But do these common images – often repeated in the media – risk making climate change feel like a far-away problem from people in the global north? And could they perpetuate harmful stereotypes?

These are some of the questions addressed in a new book by Prof Saffron O’Neill, who researches the visual communication of climate change at the University of Exeter.

The Visual Life of Climate Change” examines the impact of common images used to depict climate change – and how the use of different visuals might help to effect change.

At a launch event for her book in London, a panel of experts – moderated by Carbon Brief’s Ayesha Tandon – discussed some of the takeaways from the book and the “dos and don’ts” of climate imagery.

Power of an image

“This book is about what kind of work images are doing in the world, who has the power and whose voices are being marginalised,” O’Neill told the gathering of journalists and scientists assembled at the Frontline Club in central London for the launch event.

O’Neill opened by presenting a series of climate imagery case studies from her book. This included several examples of images that could be viewed as “disempowering”.

For example, to visualise climate change in small island nations, such as Tuvalu or Fiji, O’Neill said that photographers often “fly in” to capture images of “small children being vulnerable”. She lamented that this narrative “misses the stories about countries like Tuvalu that are really international leaders in climate policy”.

Similarly, images of power-plant smoke stacks, often used in online climate media articles, almost always omit the people that live alongside them, “breathing their pollution”, she said.

Ayesha Tandon with panellists at London’s Frontline Club. Credit: Carbon Brief
Ayesha Tandon with panellists at London’s Frontline Club. Credit: Carbon Brief

During the panel discussion that followed, panellist Dr James Painter – a research associate at the Reuters Institute for the Study of Journalism and senior teaching associate at the University of Oxford’s Environmental Change Institute – highlighted his work on heatwave imagery in the media.

Painter said that “the UK was egregious for its ‘fun in the sun’ imagery” during dangerous heatwaves.

He highlighted a series of images in the Daily Mail in July 2019 depicting people enjoying themselves on beaches or in fountains during an intense heatwave – even as the text of the piece spoke to the negative health impacts of the heatwave.

In contrast, he said his analysis of Indian media revealed “not one single image of ‘fun in the sun’”.

Meanwhile, climate journalist Katherine Dunn asked: “Are we still using and abusing the polar bear?”. O’Neill suggested that polar bear images “are distant in time and space to many people”, but can still be “super engaging” to others – for example, younger audiences.

Panellist Dr Rebecca Swift – senior vice president of creative at Getty images – identified AI-generated images as “the biggest threat that we, in this space, are all having to fight against now”. She expressed concern that we may need to “prove” that images are “actually real”.

However, she argued that AI will not “win” because, “in the end, authentic images, real stories and real people are what we react to”.

When asked if we expect too much from images, O’Neill argued “we can never pin down a social change to one image, but what we can say is that images both shape and reflect the societies that we live in”. She added:

“I don’t think we can ask photos to do the work that we need to do as a society, but they certainly both shape and show us where the future may lie.”

Watch, read, listen

UNSTOPPABLE WILDFIRES: “Funding cuts, conspiracy theories and ‘powder keg’ pine plantations” are making Patagonia’s wildfires “almost impossible to stop”, said the Guardian.

AUDIO SURVEY: Sverige Radio has published “the world’s, probably, longest audio survey” – a six-hour podcast featuring more than 200 people sharing their questions around climate change.

UNDERSTAND CBAM: European thinktank Bruegel released a podcast “all about” the EU’s carbon adjustment border mechanism, which came into force on 1 January.

Coming up

Pick of the jobs

DeBriefed is edited by Daisy Dunne. Please send any tips or feedback to debriefed@carbonbrief.org.

This is an online version of Carbon Brief’s weekly DeBriefed email newsletter. Subscribe for free here.

The post DeBriefed 30 January 2026:  Fire and ice; US formally exits Paris; Climate image faux pas appeared first on Carbon Brief.

DeBriefed 30 January 2026:  Fire and ice; US formally exits Paris; Climate image faux pas

Continue Reading

Greenhouse Gases

Factcheck: What it really costs to heat a home in the UK with a heat pump

Published

on

Electric heat pumps are set to play a key role in the UK’s climate strategy, as well as cutting the nation’s reliance on imported fossil fuels.

Heat pumps took centre-stage in the UK government’s recent “warm homes plan”, which said that they could also help cut household energy bills by “hundreds of pounds” a year.

Similarly, innovation agency Nesta estimates that typical households could cut their annual energy bills nearly £300 a year, by switching from a gas boiler to a heat pump.

Yet there has been widespread media coverage in the Times, Sunday Times, Daily Express, Daily Telegraph and elsewhere of a report claiming that heat pumps are “more expensive” to run.

The report is from the Green Britain Foundation set up by Dale Vince, owner of energy firm Ecotricity, who campaigns against heat pumps and invests in “green gas” as an alternative.

One expert tells Carbon Brief that Vince’s report is based on “flimsy data”, while another says that it “combines a series of worst-case assumptions to present an unduly pessimistic picture”.

This factcheck explains how heat pumps can cut bills, what the latest data shows about potential savings and how this information was left out of the report from Vince’s foundation.

How heat pumps can cut bills

Heat pumps use electricity to move heat – most commonly from outside air – to the inside of a building, in a process that is similar to the way that a fridge keeps its contents cold.

This means that they are highly efficient, adding three or four units of heat to the house for each unit of electricity used. In contrast, a gas boiler will always supply less than one unit of heat from each unit of gas that it burns, because some of the energy is lost during combustion.

This means that heat pumps can keep buildings warm while using three, four or even five times less energy than a gas boiler. This cuts fossil-fuel imports, reducing demand for gas by at least two-fifths, even in the unlikely scenario that all of the electricity they need is gas-fired.

Simon Evans on BlueSky (@drsimevans.carbonbrief.org): "Going slow on heat pumps could mean UK consumers having to pay an extra £3bn for imported gas 2026-2030, says Energy UK Says UK govt foot-dragging is "increasing costs for energy customers & hampering future system planning"

Since UK electricity supplies are now the cleanest they have ever been, heat pumps also cut the carbon emissions associated with staying warm by around 85%, relative to a gas boiler.

Heat pumps are, therefore, the “central” technology for cutting carbon emissions from buildings.

While heat pumps cost more to install than gas boilers, the UK government’s recent “warm homes plan” says that they can help cut energy bills by “hundreds of pounds” per year.

Similarly, Nesta published analysis showing that a typical home could cut its annual energy bill by £280, if it replaces a gas boiler with a heat pump, as shown in the figure below.

Nesta and the government plan say that significantly larger savings are possible if heat pumps are combined with other clean-energy technologies, such as solar and batteries.

Chart showing that clean electric tech could save households £1,000 a year, compared to gas boilers
Annual energy bill savings (£) for a typical household from April 2026, by using different clean-energy technologies in comparison with a gas boiler. Source: Nesta analysis, using data from Ofgem, the Centre for Net Zero and an Octopus Energy tariff.

Both the government and Nesta’s estimates of bill savings from switching to a heat pump rely on relatively conservative assumptions.

Specifically, the government assumes that a heat pump will deliver 2.8 units of heat for each unit of electricity, on average. This is known as the “seasonal coefficient of performance” (SCoP).

This figure is taken from the government-backed “electrification of heat” trial, which ran during 2020-2022 and showed that heat pumps are suitable for all building types in the UK.

(The Green Britain Foundation report and Vince’s quotes in related coverage repeat a number of heat pump myths, such as the idea that they do not perform well in older properties and require high levels of insulation.)

Nesta assumes a slightly higher SCoP of 3.0, says Madeleine Gabriel, the organisation’s director of sustainable future. (See below for more on what the latest data says about SCoP in recent installations.)

Both the government and Nesta assume that a home with a heat pump would disconnect from the gas grid, meaning that it would no longer need to pay the daily “standing charge” for gas. This currently amounts to a saving of around £130 per year.

Finally, they both consider the impact of a home with a heat pump using a “smart tariff”, where the price of electricity varies according to the time of day.

Such tariffs are now widely available from a variety of energy suppliers and many have been designed specifically for homes that have a heat pump.

Such tariffs significantly reduce the average price for a unit of electricity. Government survey data suggests that around half of heat-pump owners already use such tariffs.

This is important because on the standard rates under the price cap set by energy regulator Ofgem, each unit of electricity costs more than four times as much as a unit of gas.

The ratio between electricity and gas prices is a key determinant of the size and potential for running-cost savings with a heat pump. Countries with a lower electricity-to-gas price ratio consistently see much higher rates of heat-pump adoption.

(Decisions taken by the UK government in its 2025 budget mean that the electricity-to-gas ratio will fall from April, but current forecasts suggest it will remain above four-to-one.)

In contrast, Vince’s report assumes that gas boilers are 90% efficient, whereas data from real homes suggests 85% is more typical. It also assumes that homes with heat pumps remain on the gas grid, paying the standing charge, as well as using only a standard electricity tariff.

Prof Jan Rosenow, energy programme leader at the University of Oxford’s Environmental Change Institute, tells Carbon Brief that Vince’s report uses “worst-case assumptions”. He says:

“This report cherry-picks assumptions to reach a predetermined conclusion. Most notably, it assumes a gas boiler efficiency of 90%, which is significantly higher than real-world performance…Taken together, the analysis combines a series of worst-case assumptions to present an unduly pessimistic picture.”

Similarly, Gabriel tells Carbon Brief that Vince’s report is based on “flimsy data”. She explains:

“Dale Vince has drawn some very strong conclusions about heat pumps from quite flimsy data. Like Dale, we’d also like to see electricity prices come down relative to gas, but we estimate that, from April, even a moderately efficient heat pump on a standard tariff will be cheaper to run than a gas boiler. Paired with a time-of-use tariff, a heat pump could save £280 versus a boiler and adding solar panels and a battery could triple those savings.”

What the latest data shows about bill savings

The efficiency of heat-pump installations is another key factor in the potential bill savings they can deliver and, here, both the government and Vince’s report take a conservative approach.

They rely on the “electrification of heat” trial data to use an efficiency (SCoP) of 2.8 for heat pumps. However, Rosenow says that recent evidence shows that “substantially higher efficiencies are routinely available”, as shown in the figure below.

Detailed, real-time data on hundreds of heat pump systems around the UK is available via the website Heat Pump Monitor, where the average efficiency – a SCoP of 3.9 – is much higher.

Charts showing that recent heat-pump installations tend to be far more efficient
Number of installations by heat pump efficiency, in the electrification of heat trial (left) and on the website Heat Pump Monitor (right). An efficiency of three means that each unit of electricity delivers three units of heat, on average, across a year. Source: Heat Pump Monitor.

Homes with such efficient heat-pump installations would see even larger bill savings than suggested by the government and Nesta estimates.

Academic research suggests that there are simple and easy-to-implement reasons why these systems achieve much higher efficiency levels than in the electrification of heat trial.

Specifically, it shows that many of the systems in the trial have poor software settings, which means they do not operate as efficiently as their heat pump hardware is capable of doing.

The research suggests that heat pump installations in the UK have been getting more and more efficient over time, as engineers become increasingly familiar with the technology.

It indicates that recently installed heat pumps are 64% more efficient than those in early trials.

Jan Rosenow on BlueSky (@janrosenow.bsky.social): "Well-installed heat pumps installed in the UK today achieve on average a 64% higher efficiency than those during the early trials 15 years ago. It is testament to the brilliant installers and to the technology getting better. More in our recent paper"

Notably, the Green Britain Foundation report only refers to the trial data from the electrification of heat study carried out in 2020-22 and the even earlier “renewable heat premium package” (RHPP). This makes a huge difference to the estimated running costs of a heat pump.

Carbon Brief analysis suggests that a typical household could cut its annual energy bills by nearly £200 with a heat pump – even on a standard electricity tariff – if the system has a SCoP of 3.9.

The savings would be even larger on a smart heat-pump tariff.

In contrast, based on the oldest efficiency figures mentioned in the Green Britain Foundation report, a heat pump could increase annual household bills by as much as £200 on a standard tariff.

To support its conclusions, the report also includes the results of a survey of 1,001 heat pump owners, which, among other things, is at odds with government survey data. The report says “66% of respondents report that their homes are more expensive to heat than the previous system”.

There are several reasons to treat these findings with caution. The survey was carried out in July 2025 and some 45% of the heat pumps involved were installed between 2021-23.

This is a period during which energy prices surged as a result of Russia’s invasion of Ukraine and the resulting global energy crisis. Energy bills remain elevated as a result of high gas prices.

The wording of the survey question asks if homes are “more or less expensive to heat than with your previous system” – but makes no mention of these price rises.

The question does not ask homeowners if their bills are higher today, with a heat pump, than they would have been with the household’s previous heating system.

If respondents interpreted the question as asking whether their bills have gone up or down since their heat pump was installed, then their answers will be confounded by the rise in prices overall.

There are a number of other seemingly contradictory aspects of the survey that raise questions about its findings and the strong conclusions in the media coverage of the report.

For example, while only 15% of respondents say it is cheaper to heat their home with a heat pump, 49% say that one of the top three advantages of the system is saving money on energy bills.

In addition, 57% of respondents say they still have a boiler, even though 67% say they received government subsidies for their heat-pump installation. It is a requirement of the government’s boiler upgrade scheme (BUS) grants that homeowners completely remove their boiler.

The government’s own survey of BUS recipients finds that only 13% of respondents say their bills have gone up, whereas 37% say their bills have gone down, another 13% say they have stayed the same and 8% thought that it was too early to say.

The post Factcheck: What it really costs to heat a home in the UK with a heat pump appeared first on Carbon Brief.

Factcheck: What it really costs to heat a home in the UK with a heat pump

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com