Connect with us

Published

on

 Salak Geothermal power plant

 Sustainable Energy 

 Geothermal 

5 minutes read

Salak Geothermal power plant- Indonesia

The Salak Geothermal Power Plant is a geothermal power plant located in West Java, Indonesia. It is owned and operated by PT Pertamina Geothermal Energy, a subsidiary of the state-owned oil and gas company, Pertamina.

The Salak Geothermal Power Plant was built in the 1990s, and it began commercial operation in 1994. The plant has a total installed capacity of 377 MW, making it one of the largest geothermal power plants in the world.

The Salak geothermal field is located in the area surrounding Mount Salak, and it is one of the largest geothermal fields in Indonesia, with estimated reserves of over 1 GW. The field is characterized by high temperatures and pressures, and it contains both liquid and vapor-dominated reservoirs.

The Salak Geothermal Power Plant is an important contributor to Indonesia’s energy mix, providing a significant amount of electricity to the Java-Bali power grid. In addition to its commercial operation, the plant is also involved in research and development activities related to geothermal energy, including exploration, drilling, and reservoir management.

Overall, the Salak Geothermal Power Plant represents an important investment in Indonesia’s energy infrastructure, and it has helped to establish the country as a global leader in geothermal energy development. Geothermal power is an important source of renewable energy in Indonesia, and the government has set ambitious targets for the development of geothermal energy in the country.

History of Salak Geothermal power plant- Indonesia

The Salak Geothermal Power Plant has a relatively long history, dating back to the 1970s when the Indonesian government began exploring the country’s geothermal resources as a potential source of electricity.

In the early 1980s, a consortium of companies including Unocal and Chevron began developing the Salak geothermal field. The first exploratory well was drilled in 1983, and by the mid-1980s, the consortium had drilled several more wells and completed a pilot plant.

In 1987, the Indonesian government awarded Pertamina, the state-owned oil and gas company, a contract to develop the Salak geothermal field. Pertamina formed a subsidiary, Pertamina Geothermal Energy, to manage the project.

Construction of the Salak Geothermal Power Plant began in the early 1990s, and the plant began commercial operation in 1994. At the time, it was one of the largest geothermal power plants in the world, with an installed capacity of 270 MW. In the years since, additional units have been added to the plant, bringing its total installed capacity to 377 MW.

Today, the Salak Geothermal Power Plant is a key component of Indonesia’s energy mix, providing a significant amount of electricity to the Java-Bali power grid. The plant is also involved in research and development activities related to geothermal energy, and it has helped to establish Indonesia as a global leader in geothermal energy development.

Salak Geothermal power plant- Indonesia, operated by

The Salak Geothermal Power Plant in Indonesia is operated by PT Pertamina Geothermal Energy (PGE), a subsidiary of PT Pertamina (Persero). Pertamina Geothermal Energy is the largest geothermal energy producer in Indonesia, with a total installed capacity of more than 1,300 MW. The Salak Geothermal Power Plant is located in the Mount Salak area in West Java, Indonesia and has a capacity of 377 MW, making it one of the largest geothermal power plants in the world.

Salak Geothermal power plant- Indonesia, financial and international investment

The Salak Geothermal Power Plant in Indonesia has received financial and international investment support over the years.

In 2014, the Japan International Cooperation Agency (JICA) provided a loan of JPY 19.98 billion (approximately USD 192 million) for the expansion of the Salak Geothermal Power Plant. The loan was provided under the scheme of “Project Finance for Japanese Companies Overseas,” which aims to promote Japanese technology and know-how overseas.

In addition, in 2016, the International Finance Corporation (IFC), a member of the World Bank Group, provided a loan of USD 150 million to PT Pertamina Geothermal Energy for the development of its geothermal power plants, including the Salak Geothermal Power Plant. The loan was aimed at helping Indonesia meet its growing energy demands while reducing its carbon footprint.

The Salak Geothermal Power Plant has also received investment from other international financial institutions, such as the Asian Development Bank (ADB), the European Investment Bank (EIB), and the Multilateral Investment Guarantee Agency (MIGA).

These financial and international investment support have helped to develop and expand the Salak Geothermal Power Plant, making it a significant contributor to Indonesia’s renewable energy mix.

Salak Geothermal power plant- Indonesia, energy contribution

The Salak Geothermal Power Plant in Indonesia is a significant contributor to the country’s renewable energy mix. With a capacity of 377 MW, it provides a substantial amount of electricity to the grid, helping to meet Indonesia’s growing energy demands.

According to PT Pertamina Geothermal Energy, the Salak Geothermal Power Plant generated more than 2,900 GWh of electricity in 2020, which is equivalent to the electricity consumption of around 1.1 million households in Indonesia. The plant’s contribution to the country’s energy mix also helps to reduce carbon emissions, as geothermal energy is a clean and renewable source of power.

Overall, the Salak Geothermal Power Plant plays a vital role in Indonesia’s efforts to increase its renewable energy capacity and reduce its dependence on fossil fuels. The country has set a target of achieving 23% renewable energy in its energy mix by 2025, and geothermal energy is expected to play a significant role in achieving this target.

https://www.exaputra.com/2023/04/salak-geothermal-power-plant-indonesia.html

Renewable Energy

ACORE Statement on Treasury’s Safe Harbor Guidance

Published

on

ACORE Statement on Treasury’s Safe Harbor Guidance

Statement from American Council on Renewable Energy (ACORE) President and CEO Ray Long on Treasury’s Safe Harbor Guidance:

“The American Council on Renewable Energy (ACORE) is deeply concerned that today’s Treasury guidance on the long-standing ‘beginning of construction’ safe harbor significantly undermines its proven effectiveness, is inconsistent with the law, and creates unnecessary uncertainty for renewable energy development in the United States.

“For over a decade, the safe harbor provisions have served as clear, accountable rules of the road – helping to reduce compliance burdens, foster private investment, and ensure taxpayer protections. These guardrails have been integral to delivering affordable, reliable American clean energy while maintaining transparency and adherence to the rule of law. This was recognized in the One Big Beautiful Act, which codified the safe harbor rules, now changed by this action. 

“We need to build more power generation now, and that includes renewable energy. The U.S. will need roughly 118 gigawatts (the equivalent of 12 New York Cities) of new power generation in the next four years to prevent price spikes and potential shortages. Only a limited set of technologies – solar, wind, batteries, and some natural gas – can be built at that scale in that timeframe.”

###

ABOUT ACORE

For over 20 years, the American Council on Renewable Energy (ACORE) has been the nation’s leading voice on the issues most essential to clean energy expansion. ACORE unites finance, policy, and technology to accelerate the transition to a clean energy economy. For more information, please visit http://www.acore.org.

Media Contacts:
Stephanie Genco
Senior Vice President, Communications
American Council on Renewable Energy
genco@acore.org

The post ACORE Statement on Treasury’s Safe Harbor Guidance appeared first on ACORE.

https://acore.org/news/acore-statement-on-treasurys-safe-harbor-guidance/

Continue Reading

Renewable Energy

Should I Get a Solar Battery Storage System?

Published

on

Frequent power outages, unreliable grid connection, sky-high electricity bills, and to top it off, your solar panels are exporting excess energy back to the grid, for a very low feed-in-tariff. 

Do all these scenarios sound familiar? Your answer might be yes! 

These challenges have become increasingly common across Australia, encouraging more and more homeowners to consider solar battery storage systems. 

Why? Because they want to take control of their energy, store surplus solar power, and reduce reliance on the grid.  

But then again, people often get perplexed, and their biggest question remains: Should I get a Solar Battery Storage System in Australia? 

Well, the answer can be yes in many cases, such as a battery can offer energy independence, ensure better bill savings, and provide peace of mind during unexpected power outages, but it’s not a one-size-fits-all solution.  

There are circumstances where a battery may not be necessary or even cost-effective. 

In this guide, we’ll break down when it makes sense and all the pros and cons you need to know before making the investment.

Why You Need Battery Storage Now?

According to data, Australia has surpassed 3.9 million rooftop solar installations, generating more than 37 GW of PV capacity, which is about 20% of electricity in the National Electricity Market in 2024 and early 2025.  

Undoubtedly, the country’s strong renewable energy targets, sustainability goals, and the clean‑energy revolution have brought solar power affordability, but the next step in self‑reliance is battery storage. 

Data from The Guardian says that 1 in 5 new solar installs in 2025 now includes a home battery, versus 1 in 20 just a few years ago, representing a significant leap in adoption.  

Moreover, the recent launch of the Cheaper Home Batteries program has driven this uptake even further, with over 11,500 battery units installed in just the first three weeks from July 1, and around 1,000 installations per day. 

Overall, the Australian energy market is evolving rapidly. Average household battery size has climbed to about 17 kWh from 10–12 kWh previously.  

Hence, the experts are assuming that 10 GW of new battery capacity will be added over the next five years, competing with Australia’s current coal‑fired capacity.

What Am I Missing Out on Without Solar Batteries?

Honestly? You’re missing out on the best part of going solar. 

Renewable sources of energy like solar, hydro, and wind make us feel empowered. For example, solar batteries lower your electricity bills, minimize grid dependency, and also help to reduce your carbon footprint 

But here’s the catch! Without battery storage, you’re only halfway there! 

The true magic of solar power isn’t just in producing clean energy; it’s storing and using it efficiently.  

A solar battery lets you store excess energy and use it when the sun goes down or the grid goes out. It’s the key to real energy independence. Therefore, ultimately, getting a battery is what makes your solar system truly yours.

Why You Need Battery Storage Now

Here’s a list of what you’re missing out on without a solar battery: 

  1. Energy Independence 
  2. Batteries help you to stay powered even during blackouts or grid failures. With energy storage, you don’t have to think of fuel price volatility and supply-demand disruption in the  Australian energy market. 

  3. Maximized Savings  
  4. Adding a solar battery to your solar PV system allows you to use your own stored energy at night instead of repurchasing it at high rates. It also reduces grid pressure during peak hours, restoring grid stability. 

  5. Better Return on Investment ROI 
  6. Tired of Australian low feed-in-tariff rates 

    Make full use of your solar system by storing excess power at a low price rather than exporting it. Solar panel and battery systems can be a powerful duo for Australian households.  

  7. Lower Carbon Footprint 
  8. Despite the steady growth in solar, wind, and hydro, fossil fuels still dominate the grid. Fossil fuels supplied approximately 64% of Australia’s total electricity generation, while coal alone accounted for around 45%. 

    These stats highlight why solar battery storage is so valuable. By storing surplus solar energy, homeowners can reduce their reliance on a grid that still runs on coal and gas.  

  9. Peace of Mind 
  10. Enjoy 24/7 uninterrupted power, no matter what’s happening outside.  

    Besides powering urban homes and businesses, batteries also provide reliable power backup for off-grid living at night when your solar panel can’t produce, ensuring peace of mind. 

What Size Solar Battery Do I Need?

While choosing the battery size, it isn’t just about picking the biggest one you can afford; it’s about matching your household’s energy consumption pattern. There is no one-size battery that will make financial or functional sense for everyone. 

Nevertheless, if you have an average family of four with no exceptional power demands, you may get by with a 10kWh to 12kWh battery bank as a ready-to-roll backup system.  

Well, this is just an estimation, as we have no idea of your power needs, because selecting a battery is highly subjective to the household in question. 

With that being said, you can get a good idea of how much power you use on average by analyzing your electric bill copy. Also, keeping track of which appliances you use the most and which ones require the most power will help you.  

So, to figure out the ideal battery size for your home, you need to consider three most important things: 

  1. Your Daily Energy Usage

Check your electricity bill for your average daily consumption (in kWh). Most Australian homes use between 15 to 25 kWh per day. 

  1. Your Solar System Output

How much excess solar energy are you generating during the day? That’s the power you’ll store to use later rather than exporting. 

  1. Your Nighttime Power Usage

A battery is most useful at night or during grid outages. So, estimate how much power you typically use after sunset. However, by using a battery, you can also get the freedom of living off the grid. 

Sizing Up: The Ideal Home Battery for Aussies! 

  • For small households and light usage, a 5 kWh battery will be suitable. 
  • For average Australian households, adding a 10 kWh battery would be enough. 
  • Large homes and high-energy users will need a 13 to 15 kWh system. 
  • For full independence, off-grid living, or blackout protection, you may require a larger battery size of 20+ kWh. 

Want help calculating your exact needs? Just drop your daily usage and solar output, and we’ll do the math for you! Cyanergy is here to help!  

Sizing Up: The Ideal Home Battery for Aussies! 

  • For small households and light usage, a 5 kWh battery will be suitable. 
  • For average Australian households, adding a 10 kWh battery would be enough. 
  • Large homes and high-energy users will need a 13 to 15 kWh system. 
  • For full independence, off-grid living, or blackout protection, you may require a larger battery size of 20+ kWh. 

Want help calculating your exact needs? Just drop your daily usage and solar output, and we’ll do the math for you! Cyanergy is here to help! 

How Much Do Solar Batteries Cost?

How Much Do Solar Batteries Cost

Previously, you would have to pay between $3000 and $3600 for the battery alone, plus the cost of installation, for every kWh of solar battery storage.  

However, you can currently expect to pay between $1200 and $1400 for each kWh of solar battery storage. That is a price reduction of approximately 52%, and things will only get better from here. 

Does that imply solar batteries are cheap now? Not really, but the cost is well justified by the pros of having a battery storage system. 

Also, while paying for solar batteries, you have to consider many other factors like the type of battery, your solar panel system configurations and compatibility, brand, and installation partner.  

These will significantly influence the price range of battery storage. 

Is a Solar Battery Worth It | Pros and Cons at a Glance

It’s okay to feel a little overwhelmed while deciding to invest your hard-earned money in a battery.  

So, here we’ve listed the pros and cons of having a solar battery to help you in the decision-making process. 

Benefits of Solar Battery Storage 

  • Solar batteries help you become self-sustaining. 
  • You don’t have to care about power outages anymore 
  • In the event of any natural disaster, you will still have a power source 
  • Battery prices are dropping significantly as we speak 
  • During peak hours, grid electricity prices increase due to high demand; you can avoid paying a high price and use your battery. It’s essentially free energy, as solar generates energy from the sun. 
  • Reduced carbon footprint as the battery stores energy from a renewable source. 

Advantages of battery for the grid and national energy system: 

  • Batteries support Virtual Power Plants (VPPs). In 2025, consumers get financial bonuses (AUD 250‑400) for joining, plus grid benefits via distributed dispatchable power.  
  • Grid‑scale batteries like Victoria Big Battery or Hornsdale Power Reserve are increasing system resilience by storing large amounts of renewable energy and reducing blackout risk. 

Drawbacks of Solar Battery Storage 

  • One of the biggest barriers is that solar batteries have a high upfront cost, which makes installation harder for residents. 
  • Home batteries require physical space, proper ventilation, and can’t always be placed just anywhere, especially in smaller homes or apartments. 
  • Most batteries, like lithium-ion batteries, last 5 to 15 years, meaning they may need replacement during your solar system’s lifetime. 
  • While many systems are low-maintenance, some may require software updates, monitoring, or even professional servicing over time. 
  • Battery production involves mining and processing materials like lithium or lead, which raise environmental and ethical concerns.   

Should You Buy a Solar Battery?: Here’s the Final Call!

You should consider buying a solar battery if several key factors align with your situation.  

First, it’s a strong financial move if you live in a state where federal and state incentives can significantly reduce the upfront cost. This can make the investment far more affordable.  

A solar battery can be especially worthwhile if you value having backup power during outages, lowering your electricity bills, and gaining a measure of energy independence from the grid.  

Additionally, you should be comfortable with taking a few extra steps to get the most value out of your system, such as joining a virtual power plant (VPP), which allows your battery to participate in grid services in exchange for modest returns.  

Finally, it’s worth noting that rebates decline annually, and early adopters get the most value.  

Takeaway Thoughts

Installing a solar battery in Australia in mid‑2025 offers substantial financial, environmental, and energy‑security benefits, especially if you qualify for multiple subsidies and have good solar capacity.  

With rebates shrinking after 2025 and demand surging, early movers stand to benefit most. 

By helping balance the grid and reduce dependence on fossil fuels, home battery adoption contributes significantly to Australia’s national goals of 82% renewable energy by 2030 

It’s not just about savings; it’s about being part of a smarter, cleaner, more resilient electricity future for Australia. 

Looking for CEC-accredited local installers?  

Contact us today for any of your solar needs. We’d be happy to assist!  

Your Solution Is Just a Click Away

The post Should I Get a Solar Battery Storage System? appeared first on Cyanergy.

Should I Get a Solar Battery Storage System?

Continue Reading

Renewable Energy

Wine Grapes and Climate Change

Published

on

I just spoke with a guy in the wine industry, and I asked him how, if at all, climate change is affecting what we does.

From his perspective, it’s the horrific wildfires whose smoke imbues (or “taints”) the grapes with an unpleasant flavor that needs to be modified, normally by creative methods of blending.

Wine Grapes and Climate Change

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com