Connect with us

Published

on

The Pharmaceutical industry is responsible for 4.4% of global emissions.


The pharmaceutical sector, faced with rising stakeholder expectations and tightening regulations, is accelerating efforts to reduce its environmental impact. Several major players in the industry have committed to achieving Net Zero emissions as part of their corporate sustainability strategy. These leader are blazing the trail by implementing policies and undertaking initiatives, including the purchase of carbon credits, to accomplish this ambitious objective.

The pharmaceutical industry’s carbon footprint

The pharmaceutical sector is a significant contributor to global emissions. If it were a country, its carbon footprint would rank 9th in the world. Energy-intensive manufacturing processes, extensive distribution networks, and greenhouse gas-emitting propellants in inhalers drive up the industry’s climate impacts. Experts urge pharmaceutical companies to act, as unmitigated warming could strain global health systems and hinder access to vital medications.

While daunting, the mission is not impossible. Industries like tech and retail are demonstrating that reaching Net Zero is achievable. These commitments raise the bar for pharmaceutical companies to take equally bold climate action.

Major industry players are stepping up. AstraZeneca, Novartis, and Takeda have set ambitious Net Zero targets while investing in renewable energy, green chemistry innovation, and carbon removal. Their efforts are having ripple effects as peers follow suit. With collaboration and persistence, the pharmaceutical industry can curb its emissions in line with climate science.

AstraZeneca’s U$1bn of climate commitments

With over $26 billion in annual revenue, AstraZeneca is one of the world’s largest pharmaceutical companies. It manufactures blockbuster treatments ranging from diabetes to oncology medications.

In 2020, AstraZeneca announced its Ambition Zero Carbon strategy, aiming to achieve carbon neutrality across its entire value chain by 2030. This bold pledge puts AstraZeneca at the vanguard of climate action in pharma.

To meet its goal, AstraZeneca is transitioning to 100% renewable electricity at its sites by 2025. It is also optimizing manufacturing to curb emissions while partnering with suppliers to reduce their carbon footprints. AstraZeneca also plans to eliminate fossil fuel vehicles from its fleet by 2030.

Beyond its operations, AstraZeneca is developing a portfolio of over $1 billion in green investments. These include carbon removal and storage solutions expected to offset about 2.5 million tonnes of CO2 annually by 2025.

AstraZeneca’s commitment is spurring the industry to accelerate sustainability initiatives. Being the pioneer in the pharmaceutical industry to establish a bold net-zero objective that encompasses its entire value chain, AstraZeneca is setting a remarkable example that its competitors will have to strive to emulate.

Novartis to use 100% renewable energy by end of 2023

Headquartered in Switzerland, Novartis is a leading global medicines company with over $48 billion in 2021 revenue. Its therapeutic areas span eye care, immunology, and cardiovascular treatments.

In 2021, Novartis announced its aim to achieve carbon neutrality across Scopes 1, 2, and 3 by 2040. Scope 1 and 2 cover direct emissions from Novartis’ operations, while Scope 3 includes indirect emissions across its supply chain.

Novartis’ environmental policies are publicly available on the internet. The company has made meeting its Net Zero ambition a top priority, with a strong and focused approach in four crucial areas: sourcing renewable electricity, enhancing energy efficiency, promoting innovative green chemistry, and investing in carbon removal offsets.

Novartis is already sourcing 80% of its electricity from renewables. It is also optimizing production processes, deploying automation, and modifying fleet vehicles to curb emissions. The company is on track to source 100% of its power from renewables by the end of 2023.

Additionally, Novartis is pioneering molecular design techniques to develop medicines with lower environmental impacts. The company is actively investing in projects that focus on nature-based carbon removal, such as collaborating with Carbon Direct to expand the implementation of carbon forestry offsets.

By working toward Net Zero science-based targets, Novartis is positioning itself as a leader in green pharmaceutical manufacturing. Its multipronged approach can serve as a model for other companies.

Takeda Pharmaceuticals shows the way for Asia

Japan’s largest pharmaceutical company, Takeda Pharmaceutical generates over $30 billion in annual revenue from medicines treating conditions from cancer to rare diseases.

In 2021, Takeda announced its commitment to achieving Net Zero greenhouse gas emissions by 2040. It is working to reduce and offset its entire carbon footprint, including Scope 3 emissions from its supply chain.

Takeda is achieving its goal by increasing renewable electricity usage, improving energy efficiency at its sites, electrifying its vehicle fleet, and reducing emissions from business travel. It aims to cut Scopes 1 and 2 emissions 46% by 2030.

Takeda also collaborates with pharmaceutical industry partners and suppliers to curb emissions across its value chain under the Pharmaceutical Supply Chain Initiative. And it plans to utilize carbon removal offsets for hard-to-abate emissions.

Takeda’s pledge to achieve Net Zero marks a groundbreaking moment for the pharmaceutical industry in Asia and beyond, as they lead the charge towards comprehensive decarbonization. It’s 2040 target and interim science-based milestones demonstrate meaningful leadership.

Pharma’s challenges in reaching Net Zero

Despite strong commitments from sustainability front-runners, achieving net-zero emissions poses complex challenges for pharmaceutical companies. Many production processes inherently rely on fossil fuels as heat sources and for transporting materials. Companies need major capital investments to transition these operations to clean energy alternatives.

Pharmaceutical distribution and long, complex supply chains also make emissions reductions difficult. Cold chain storage and last-mile delivery result in substantial greenhouse gas outputs. Meanwhile, developing green chemistry solutions requires years of research and development, along with new manufacturing infrastructure. These costs can be prohibitive.

Overcoming Challenges

While obstacles exist, experts emphasize they can be solved through collaboration, innovation, and policy action.

Companies can join forces and share their knowledge and resources through initiatives like the Pharmaceutical Supply Chain Initiative. This collaboration enables them to expand their renewable energy procurement, boost their efficiency, and make strides in green chemistry.

Governments can help by offering incentives for clean technology investments and funding research into pharmaceutical process improvements.

International cooperation can accelerate decarbonization of global supply chains. And standardized offset methodologies will ensure carbon removal credits have integrity.

Ultimately, reaching Net Zero will depend on persistence, investment, and cross-industry partnership. But the health and environmental benefits make it imperative for pharmaceutical companies to see it through.

Opportunities from Net Zero efforts

Pursuing Net Zero targets also opens up opportunities for pharmaceutical companies to add business value, beyond environmental benefits. Optimizing processes for energy efficiency provides cost savings from reduced power consumption and heating needs. Streamlining supply chains also cuts costs over the long term.

First movers on Net Zero goals can boost their reputations with consumers and investors, who increasingly prioritize sustainability. These companies may have better talent recruitment and retention.

Developing and marketing lower carbon medicines can become a competitive advantage. Doctors and health systems are paying more attention to the climate footprint of drugs.

AstraZeneca’s partnerships have the potential to unlock opportunities for companies to venture into the burgeoning green investment markets. Through these collaborations, businesses can not only contribute to the sustainability of our planet but also reap financial benefits by investing in carbon removal and renewable energy projects.

Finally, building climate resilience helps ensure business continuity as the physical impacts of climate change accelerate.

Government policy propels climate action

Governments are ramping up policies aimed at decarbonizing pharmaceutical value chains through incentives and requirements.

The Inflation Reduction Act of 2022 in the United States presents an extraordinary opportunity, providing over $60 billion in incentives dedicated to fostering energy efficiency, electrification, and groundbreaking advancements in green chemistry. This can offset costs for companies pursuing these strategies.

The EU’s pharmaceutical strategy aims to make drug manufacturing and distribution more sustainable by implementing green product design and procurement requirements. This will help reduce emissions.

India released a roadmap in 2022 pushing pharmaceutical companies to adopt renewable energy and assess Scope 3 climate impacts. It aims to help India meet its national climate targets.

Such policies encourage pharmaceutical companies to take ownership of their emissions and are likely to expand as more governments declare net-zero commitments.

The Road Ahead

While the 2030s and 2040s may seem like distant milestones, reaching Net Zero requires immediate action across pharmaceutical supply chains. Industry leaders have provided a blueprint – including renewable energy procurement, distribution optimization, green chemistry, and carbon removal.

New technologies and nature-based solutions are expanding decarbonization opportunities. With collective willpower, strategic investment, and transparent reporting, Net Zero is within the pharmaceutical industry’s reach. All stakeholders must maintain pressure and hold firms accountable for their pledges for a sustainable future.

Photo credit

Photo by Myriam Zilles on Unsplash

Carbon Footprint

Apple: $94 Billion Record Earnings and the Breakthrough Climate Solutions Fueling Growth

Published

on

apple

Apple stock (AAPL) has been on an upward trend, fueled by a mix of strategic investments, strong earnings, and a push toward domestic manufacturing. Investors are taking notice as the tech giant positions itself to reduce tariff risks, strengthen its supply chain, and meet rising demand for its products—all while staying true to its sustainability goals.

The Rise of AAPL Stock: Why and How

Several factors are driving the recent rally in Apple (AAPL) shares. The company’s $100 billion expansion of its U.S. manufacturing program, record-breaking quarterly results, partnerships with domestic suppliers, and commitment to recycled materials have combined to create strong investor confidence.

On top of that, bullish technical signals and potential AI collaborations are adding to the market enthusiasm.

“As of August 14, 2025, Apple Inc. (AAPL) is trading at $233.33 USD on the NASDAQ exchange, reflecting a 1.6% increase (+$3.68) from the previous close.”

APPLE AAPL Stock
Source: Yahoo Finance

Let’s dive deeper into this:

$100 Billion Boost to American Manufacturing

Apple recently pledged an additional $100 billion to expand its U.S. manufacturing footprint, raising its total four-year American Manufacturing Program commitment to $600 billion. This plan includes opening new plants, offering supplier grants, and forming partnerships for key components like glass and chips.

The move is seen as a direct response to trade tensions with Washington, particularly past threats from President Donald Trump to impose a 25% tariff if iPhones weren’t made in the U.S. By increasing domestic production, Apple is improving its standing with policymakers and reducing the risk of costly import tariffs.

Key Partnerships Strengthen U.S. Supply Chain

As per media reports, the manufacturing expansion covers a broad network of U.S.-based suppliers and partners:

  • Corning (GLW): Expanding smartphone glass production in Kentucky.
  • Coherent (COHR): Producing VCSEL lasers for Face ID in Texas.
  • TSMC, GlobalFoundries (GFS), and Texas Instruments (TXN): Collaborating on semiconductor production across Arizona, New York, Utah, and Texas.
  • GlobalFoundries: Manufacturing wireless charging tech in New York.

Apple says this reshoring effort will enable an “end-to-end” chipmaking process in the U.S., from wafers to finished semiconductors. Over 19 billion chips for Apple products will be made domestically this year.

Rare Earth Partnership with MP Materials

Apple is also investing $500 million in MP Materials (NYSE: MP) to secure a long-term supply of rare earth magnets made entirely from recycled materials. These will be processed and manufactured in the U.S., supporting both supply chain resilience and Apple’s environmental commitments.

Apple’s Strong Earnings Fuel Investor Optimism

Apple’s latest earnings report added fuel to the rally. The company posted record June-quarter revenue of $94 billion—up 10% year over year. Product sales hit $66.6 billion, led by strong demand for the new iPhone 16 lineup and Mac computers.

Services revenue rose 13% to $27.4 billion, showing the company’s ability to diversify beyond hardware and generate steady, high-margin income.

Sustainability at the Core of Apple Products

Apple’s stock story also has a purpose. As per its latest sustainability report, in 2024, 24% of all product materials came from recycled or renewable sources, including:

  • 99% recycled rare earth elements in magnets
  • 99% recycled cobalt in batteries
  • 100% recycled aluminum in many cases

Apple avoided 41 million metric tons of greenhouse gas emissions in 2024—equal to taking 9 million cars off the road. The company aims for a 75% emissions reduction from 2015 levels.

apple products
Source: Apple

AI Partnerships Could Add Another Growth Driver

Reports suggest Apple is exploring partnerships with OpenAI and Anthropic to enhance Siri. If successful, these deals could strengthen Apple’s position in the fast-growing AI market.

Can U.S. Manufacturing Plans Keep the Rally Going?

Apple’s reshoring strategy could sustain momentum over the medium term. By resonating with Trump’s “America First” policies and reducing reliance on overseas suppliers, the company is lowering regulatory risks and earning political goodwill.

Nonetheless, challenges remain, but the long-term benefits could outweigh them by securing a more resilient supply chain.

From this analysis, it’s evident that Apple’s recent gains reflect a powerful combination of U.S. manufacturing investments, record earnings, sustainability leadership, and potential AI growth. By strategically aligning with domestic policy and building a stronger supply chain, the company is reducing uncertainty, which is one of the biggest drivers of investor confidence.

The post Apple: $94 Billion Record Earnings and the Breakthrough Climate Solutions Fueling Growth appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

U.S. DOE Reveals $1B Funding to Boost Critical Minerals Supply Chain

Published

on

U.S. DOE Reveals $1B Funding to Boost Critical Minerals Supply Chain

The U.S. Department of Energy (DOE) has announced a nearly $1 billion program to strengthen America’s supply of critical minerals and materials. The funding will support mining, processing, and manufacturing within the country. These materials power clean energy technologies and are vital for national security.

This funding builds on President Trump’s Executive Order to Unleash American Energy. It also supports the DOE’s wider Critical Minerals and Materials Program, which focuses on boosting U.S. production, expanding recycling, and strengthening supply chain security.

U.S. Secretary of Energy Chris Wright remarked:

“For too long, the United States has relied on foreign actors to supply and process the critical materials that are essential to modern life and our national security. Thanks to President Trump’s leadership, the Energy Department will play a leading role in reshoring the processing of critical materials and expanding our domestic supply of these indispensable resources.”

From Mines to Magnets: Where the $1B Goes

The DOE’s $1 billion plan targets key minerals like lithium, cobalt, nickel, and rare earth elements. These are essential for electric vehicle batteries, wind turbines, solar panels, and advanced electronics used in defense systems.

The funding is split across several areas:

  • $500 million to the Office of Manufacturing and Energy Supply Chains (MESC) for battery material processing, manufacturing, and recycling projects.
  • $250 million to the Office of Fossil Energy and Carbon Management to support facilities producing mineral byproducts from coal and other sources.
  • $135 million to boost rare earth element production by extracting them from mining waste streams.
  • $50 million to refine materials like gallium, germanium, and silicon carbide, which are crucial for semiconductors and high-performance electronics.
  • $40 million through ARPA-E’s RECOVER program to extract minerals from industrial wastewater and other waste streams.
DOE’s $1 Billion Critical Minerals Initiative
Source: U.S. DOE

By investing from extraction to refining, the DOE aims to reduce reliance on foreign suppliers, especially those in politically unstable regions. The plan also encourages public–private partnerships to scale production faster.

Why Critical Minerals Matter for America’s Future

Critical minerals lie at the heart of America’s economic transformation and defense strategy. In recent years, demand for lithium, cobalt, nickel, and rare earth elements has grown. This rise comes as clean energy technologies become more important.

The U.S. imports more than 80% of its rare earth elements, and most of this comes from one country – China. This heavy reliance creates risks during trade or geopolitical tensions.

US rare earth import from China

The Trump administration has placed strong emphasis on closing this vulnerability. In March 2025, an executive order highlighted critical minerals as vital for national defense. It also set timelines to boost U.S. production and processing capacity. This aligns with broader economic priorities, including clean energy jobs, green infrastructure, and domestic manufacturing.

The Inflation Reduction Act and infrastructure programs have unlocked billions in grants and tax credits. These funds support electric vehicle manufacturing, battery plants, and renewable energy projects.

The DOE’s $1 billion critical mineral fund supports programs by focusing on materials essential for the clean energy economy. Also, by reusing existing industrial facilities to recover minerals instead of building entirely new ones, the DOE can speed up progress and reduce costs.

EV production is expected to grow faster than any other sector, with demand for minerals likely to be more than 10x higher by 2050. This surge will transform the global supply chain and is critical for the global Net Zero aspirations.

Mineral demand for Electric vehicles in the Net Zero Emissions by 2050 Scenario
Source: IEA

The combined impact of industrial strategy, financial incentives, and supply chain investments shows a clear push to:

  • Move production back onshore,
  • Boost innovation in materials recycling,
  • Support the energy transition, and
  • Cut down on foreign imports.

Building on Early Wins

The DOE’s new $1 billion investment boosts earlier funding for critical minerals. This aims to strengthen U.S. industrial capacity.

In 2023, the Department gave $150 million to various clean mineral projects. These include direct lithium extraction in Nevada and early-stage nickel processing partnerships in Oregon.

Since 2021, DOE has invested more than $58 million in research. This work focuses on recovering critical minerals from industrial waste or tailings. They are turning by-products into valuable feedstock.

These R&D projects created pilot facilities. They show how to recover lithium from geothermal brines and rare earths from coal ash. This approach models resource use without needing new mining.

Built on these early successes, the new $1 billion fund signals a shift from pilot programs to scaling proven technologies. It allows U.S. manufacturers to pivot from lab-scale experiments to full commercial operations. 

For example, lithium recovery projects are moving from test sites to large extraction facilities. This shift is supported by the technical help from DOE’s national labs.

Likewise, battery recycling pilots are set to grow. More recycling centers are being planned in the Midwest and Southwest.

This funding approach provides continuity. It supports U.S. firms from basic research to commercialization. This helps them quickly move from proof-of-concept to production-ready operations. It also reassures private investors that government backing is strategic and sustained.

McKinsey projects that developing new copper and nickel projects will require between $250 billion and $350 billion by 2030. By 2050, the broader critical minerals sector could grow into a trillion-dollar market to support the net-zero or low-carbon transition.

raw materials supply for low-carbon transition

Washington’s Backing, Industry’s Buy-In

Political backing for the domestic minerals strategy is strong. A recent executive order aims to speed up mining permits and provide federal support.

The Defense Department has also invested $400 million in MP Materials, the largest stakeholder in the only U.S. rare earth mine. This deal includes a new plant to produce magnets for electronics and defense applications.

Industry players are moving in the same direction. Battery maker Clarios is exploring sites for a $1 billion processing and recovery plant in the country. These moves show a shared goal between government and industry to rebuild America’s mineral supply chains.

Opportunities—and the Roadblocks Ahead

The DOE’s program offers major opportunities:

  • Less reliance on foreign countries for essential materials.
  • Creation of high-quality U.S. jobs.
  • Growth in recycling and recovery technologies.

However, challenges remain. Mining and processing must be done without harming the environment. Technology costs need to stay competitive. And benefits must be shared fairly with local and Indigenous communities.

Amid all this, the global race for critical minerals is intensifying. Many countries are already securing their own supplies. The U.S. wants to close its supply gap and become a leader in clean energy manufacturing.

The DOE’s nearly $1 billion plan is a key step toward reshoring America’s critical minerals industry. It builds on earlier successes and aligns with private investments and new policies. If successful, it could make U.S. supply chains more secure, support the clean energy transition, and strengthen national security.

The post U.S. DOE Reveals $1B Funding to Boost Critical Minerals Supply Chain appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Bitcoin Price Hits $124,000 Record High vs Ethereum Price Near $4,800: Which Crypto Is Greener?

Published

on

Bitcoin Hits A New Record, Ethereum Nears Its Peak: But Which Is Greener?

Bitcoin price just smashed through $124,000 while Ethereum is closing in on its $4,800 record, fueling fresh excitement in the crypto market. But beyond price charts, the two blockchains have sharply different environmental footprints.

One still runs on an energy-hungry proof-of-work system, while the other has reinvented itself with a proof-of-stake model that slashes energy use by over 99%. The question for climate-minded investors: which crypto comes out greener? Let’s find out.

Crypto’s New Highs, Old Questions

Bitcoin price surged past $124,000 upon writing, setting a new all-time high. Analysts credit several factors:

  • strong institutional buying,
  • increased inflows into Bitcoin ETFs,
  • favorable regulatory changes allowing crypto assets in 401(k) retirement accounts, and
  • growing market optimism over expected Federal Reserve interest rate cuts.
Bitcoin all time high $124,000
Source: AlphaFlipper

The rally reflects both a recovery from previous market downturns and a renewed appetite for digital assets among mainstream investors.

Ethereum, the second-largest cryptocurrency by market capitalization, is also on the rise. It is now approaching its all-time high of around $4,800, last seen in November 2021.

ethereum near record high

Investor sentiment is rising because of Ethereum’s role in decentralized finance (DeFi) and NFT marketplaces. Its better environmental profile, thanks to the switch to a proof-of-stake (PoS) model, also helps.

With both tokens in focus, let’s look at their energy use and carbon footprint. This matters for investors and policymakers who care about their climate and environmental impact.

How Bitcoin’s Proof-of-Work Consumes Energy

Bitcoin’s network runs on a process called proof-of-work (PoW). Miners around the world compete to solve complex mathematical puzzles. The first to solve it gets to add a block of transactions to the blockchain and earn newly minted Bitcoin. This process secures the network but demands enormous computing power.

That computing power uses a lot of electricity. Bitcoin’s annual energy use is estimated at about 138–178 terawatt-hours (TWh). This is similar to the electricity consumption of countries like Poland or Thailand, and even greater than Norway.

The carbon footprint is equally large, at around 40 million tonnes of CO₂ equivalent per year. To put that into perspective, that’s similar to the emissions of Greece or Switzerland.

On a per-transaction basis, a single Bitcoin payment can use as much energy as a typical U.S. household does in one to two months.

Bitcoin energy use versus countries
Source: Statista

Beyond electricity, Bitcoin mining also generates significant electronic waste. Specialized mining hardware, called ASICs, becomes obsolete quickly—often within two to three years—because faster, more efficient models keep being developed. This turnover contributes thousands of tonnes of e-waste annually.

Ethereum’s Post-Merge Energy Transformation

Before 2022, Ethereum also used proof-of-work, with high energy demands. But in September 2022, the network completed the Merge, switching to proof-of-stake.

Ethereum now uses validators instead of miners. These validators “stake” their ETH tokens as collateral. This helps confirm transactions and secure the network.

This change cut Ethereum’s energy use by over 99.9%. Today, the network consumes an estimated 2,600 megawatt-hours (MWh) annually—roughly 0.0026 TWh. That’s less electricity than a small town of 2,000 homes might use in a year.

The carbon footprint is also tiny compared to Bitcoin—under 870 tonnes of CO₂ equivalent annually. That’s about the same as the yearly emissions of 100 average U.S. households. In environmental terms, Ethereum has gone from being one of the largest blockchain energy consumers to one of the most efficient.

Ethereum carbon footprint
Source: Ethereum

Beyond Electricity: Hidden Environmental Costs

While electricity use is the biggest factor, it’s not the only environmental concern for both cryptocurrencies. Here are the other environmental impacts:

  • Water Use:
    Large-scale Bitcoin mining facilities often require substantial cooling, which can consume millions of liters of water annually. This can put pressure on local water supplies, particularly in drought-prone regions. Ethereum’s low energy profile greatly reduces such needs.
  • Heat Output:
    Mining facilities generate significant heat. In some cases, waste heat is reused for industrial or agricultural purposes, but in most situations, it is simply released into the environment, adding to local thermal loads.
  • Land and Infrastructure:
    Bitcoin mining operations require large warehouses and access to high-capacity electrical infrastructure. This can limit available industrial space for other uses and put stress on local grids.

By using proof-of-stake, Ethereum avoids most of these impacts. It just needs standard server equipment. This can run in data centers with other low-impact computing tasks.

bitcoin versus ethereum carbon footprint

How the Industry Is Addressing Bitcoin’s Footprint

The crypto industry is aware of Bitcoin’s environmental challenges and is taking steps to address them. Some of the actions taken include:

  • Renewable Mining: Some mining operations use only hydro, wind, or solar energy. This is common in areas with plenty of renewable resources.
  • Waste Heat Recovery: A few miners capture and reuse waste heat for agriculture (e.g., greenhouse farming) or district heating systems.
  • Carbon Offsetting: Companies and mining pools are buying carbon credits to offset emissions. However, how well this works depends on the quality of those credits.
  • Policy Proposals: Governments may require Bitcoin miners to share their energy sources or meet renewable energy goals.

SEE MORE: Top 5 Sustainable Bitcoin Mining Companies To Watch Out For

While these efforts are promising, the core challenge remains: proof-of-work’s high energy requirement is built into Bitcoin’s security model.

Why This Matters for ESG-Minded Investors

For investors who care about environmental, social, and governance (ESG) factors, the difference between Bitcoin and Ethereum is stark. Ethereum’s low-energy proof-of-stake model makes it easier to align with climate goals. Bitcoin’s high energy use and emissions, while partially mitigated by renewable adoption, remain a significant concern.

These factors may influence where ESG-focused funds allocate capital. Companies and institutions wanting exposure to blockchain technology without a large carbon footprint might prefer Ethereum or other PoS networks.

Bitcoin may still attract investors because of its market dominance and value as a store. However, it will likely keep facing environmental concerns.

The Road Ahead for Crypto and Climate

Bitcoin and Ethereum’s price rallies show that investor interest in crypto remains strong. As climate change and sustainability gain importance in policy and investment, environmental performance may play a larger role in the long-term value and acceptance of digital assets.

For now, Ethereum sets the standard for energy efficiency among major blockchains, while Bitcoin represents the ongoing challenge of balancing security, decentralization, and sustainability. Can Bitcoin cut its environmental impact without losing its key features? This will be an important question in the coming years.

The post Bitcoin Price Hits $124,000 Record High vs Ethereum Price Near $4,800: Which Crypto Is Greener? appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com