Connect with us

Published

on

 

Lansdcape of Hydroelectric Power Plant

Introduction Lansdcape of Hydroelectric Power Plant

Landscapes of Power: Unveiling the Beauty and Impact of Hydroelectric Dams

Hydroelectric power plants, harnessing the mighty force of rushing water, stand as monuments to human ingenuity. But their presence goes beyond the turbines and concrete. 

They reshape landscapes, weaving themselves into the fabric of nature, leaving behind a legacy that is both awe-inspiring and complex.

A Tapestry of Water and Steel:

Imagine a towering dam, a behemoth of sculpted concrete, carving a new horizon across a once-meandering river. Its crest becomes a walkway, offering breathtaking panoramas of the newly formed reservoir, a vast expanse of mirrored sky reflecting the surrounding mountains. Narrow canyons transform into serene lakes, their glassy surfaces punctuated by the occasional kayaker or sailboat. This is the grand spectacle, the awe-inspiring transformation that defines the landscape of a large hydroelectric dam.

But the story doesn’t end there. Look closer, and you’ll see intricate networks of pipelines snaking down mountainsides, steel penstocks carrying the lifeblood of the dam – rushing water. Power lines, arteries of electricity, stretch across valleys, connecting the dam to the distant lights it will power. These elements, both industrial and utilitarian, become part of the landscape, their stark lines contrasting with the verdant slopes and whispering waterfalls.

A Boon or a Burden?

The impact of hydroelectric power plants on landscapes extends far beyond their physical presence. They are, after all, not just structures; they are agents of change. The creation of a reservoir often disrupts ecosystems, displacing communities and altering natural habitats. Lush valleys give way to vast bodies of water, impacting downstream flows and affecting the delicate balance of life.

But it’s not all negative. Hydroelectric power, a renewable source of energy, helps fight climate change and reduces dependence on fossil fuels. The reservoirs can provide opportunities for recreation, fostering tourism and local economies. Some dams even incorporate fish ladders, mitigating the impact on aquatic life.

Finding Harmony:

The landscape around a hydroelectric power plant is thus a canvas painted with both progress and consequences. It’s a story of human ambition intertwined with the delicate dance of nature. The challenge lies in finding harmony, in mitigating the negative effects while maximizing the benefits. Sustainable design, environmental impact assessments, and community engagement are all crucial steps in this direction.

The landscapes of hydroelectric power plants are a testament to our power to shape the world. They are a reminder that with each step forward, we must tread carefully, ensuring that our progress enriches not just our lives, but also the tapestry of nature we are forever a part of.

Number of Hydropower Plants and Capacity by Region

While hydroelectric power remains a crucial renewable energy source globally, its distribution varies significantly across regions. 

East Asia and Pacific dominates with over 31,000 plants boasting 548 GW of capacity, driven by China’s immense network. Europe and Eurasia follow suit with 20,000+ plants and 230 GW, showcasing a long history of hydropower utilization. 

Meanwhile, South America relies on fewer but larger dams like Itaipu, totaling 4,000+ plants and 148 GW. Despite a smaller share globally, Africa and the Middle East possess immense potential for future development, particularly in the Congo Basin and Nile River regions. Understanding this regional landscape is key to optimizing hydropower’s contribution to a sustainable energy future, balancing potential with responsible development and environmental considerations.

Table Number of Hydropower Plants and Capacity by Region:

Region Number of Plants (Approximate) Total Installed Capacity (GW)
East Asia & Pacific 31,000+ 548
Europe & Eurasia 20,000+ 230
South America 4,000+ 148
North America 3,000+ 141
Africa & Middle East 7,000+ 53

Sources:

The information provided here gives you a good starting point for understanding the distribution and potential of hydroelectric power across different regions. Be mindful of the data limitations and consider exploring further resources for specific details.

Lansdcape of Hydroelectric Power Plant

Lansdcape of Hydroelectric Power Plant in East Asia and Pasific

The Mighty Hydropower Landscape of East Asia and the Pacific

East Asia and the Pacific stand as the undisputed champions of hydroelectric power, boasting a staggering 31,000+ plants and a colossal 548 GW of installed capacity. This translates to roughly half of the world’s hydropower plants and over half of its total capacity concentrated in this dynamic region. Let’s dive into the diverse landscape of this renewable energy powerhouse:

China: The Dragon of Dams

China, the undisputed leader in East Asia’s hydropower scene, is home to a mind-boggling 23,000+ plants, generating a whopping 370 GW of electricity. The Three Gorges Dam, the world’s largest operating hydropower plant, reigns supreme with its 22.5 GW capacity, dwarfing many entire countries’ hydropower output.

Beyond the Giant: A Tapestry of Hydropower

While China steals the spotlight, other nations in the region contribute significantly to the hydropower tapestry. Japan, with its mountainous terrain, utilizes over 3,000 plants to generate 32 GW of clean energy. Vietnam, harnessing the mighty Mekong River, boasts 600+ plants and 11.4 GW of capacity. Even island nations like Indonesia and the Philippines rely on hydropower, with over 650 plants and 6 GW and 3 GW of capacity, respectively.

The Future of Hydropower: Balancing Benefits and Challenges

While hydropower offers clean energy and grid stability, concerns about environmental impact and social displacement cannot be ignored. Large dams can disrupt ecosystems and impact communities. Striking a balance between harnessing hydropower’s potential and ensuring responsible development is crucial. East Asia and the Pacific are at the forefront of this challenge, pioneering innovative solutions like run-of-the-river plants and mini-hydro projects that minimize environmental impact.

East Asia and the Pacific’s hydropower landscape is a microcosm of the global challenge: balancing the need for clean energy with environmental and social responsibility. As the region continues to develop its hydropower potential, the world watches with keen interest, hoping to learn from its successes and address its challenges.

Table of Hydroelectric Power Plant in East Asia and Pasific by Country

Here is  Hydroelectric Power Plants in East Asia and the Pacific by Country

Country Plant Name Installed Capacity (MW) River (if applicable) Year Commissioned Notes
China Three Gorges Dam 22,500 Yangtze River 2003 World’s largest hydroelectric plant
Baihetan Dam 16,000 Jinsha River 2022 Second largest hydroelectric plant in China
Xiluodu Dam 13,860 Jinsha River 2014 Third largest hydroelectric plant in China
Xiangjiaba Dam 6,020 Jinsha River 2014
Ertan Dam 3,333 Yalong River 1999
Gezhouba Dam 2,592 Yangtze River 1980
Jinping I Hydropower Station 3,600 Yalong River 2014
Jinping II Hydropower Station 4,800 Yalong River 2014
Japan Kurobe Dam 3,354 Kurobe River 1963 Highest dam in Japan
Tokuyama Dam 1,250 Tenryu River 1969
Ogaki Dam 1,137 Jinzu River 1957
Shin-Takasegawa Dam 1,030 Tone River 1989
South Korea Daecheong Dam 744 Han River 1980 Largest hydroelectric plant in South Korea
Soyanggang Dam 650 Soyang River 1970 Second largest hydroelectric plant in South Korea
Andong Dam 530 Nakdong River 1979 Third largest hydroelectric plant in South Korea
Australia Snowy Mountains Hydroelectric Scheme 4,800 Snowy River 1949-1974 Largest hydroelectric scheme in Australia
Tumut 3 Hydro Power Station 1,500 Tumut River 1960 Largest single hydroelectric plant in Australia
New Zealand Benmore Dam 514 Waitaki River 1965 Largest hydroelectric plant in New Zealand
Clyde Dam 440 Clutha River 1992 Second largest hydroelectric plant in New Zealand
Indonesia Cirata Dam 1,040 Citarum River 1983 Largest hydroelectric plant in Indonesia
Jatiluhur Dam 129 Citarum River 1967
Philippines Magat Dam 350 Magat River 1985 Largest hydroelectric plant in the Philippines
Binga Dam 100 Abra River 1965

Note: This table is not exhaustive and includes only a selection of major hydroelectric power plants in East Asia and the Pacific.

Additional Information:

  • You can find more detailed information about specific hydroelectric power plants online or in hydropower databases.
  • The installed capacity of a hydroelectric power plant is the maximum amount of power it can generate at one time.
  • The year commissioned is the year the plant first began to generate electricity.
Lansdcape of Hydroelectric Power Plant

Lansdcape of Hydroelectric Power Plant in Europe and Eurosia

Hydroelectric Power in Europe and Eurasia: A Landscape of Diverse Powerhouses

The vast Eurasian continent, encompassing both Europe and Asia, boasts a diverse landscape of hydroelectric power plants, each harnessing the power of moving water to generate clean electricity. From the towering dams of Norway to the intricate canal systems of the Netherlands, these plants not only provide sustainable energy but also contribute to the region’s breathtaking natural beauty.

Towering Titans:

  • Norway: Home to some of the tallest dams in Europe, Norway’s hydroelectric plants are true titans of the industry. The tallest of them all, the 220-meter-high Svartefoss Dam, stands amidst a dramatic fjord landscape, capturing the immense power of glacial meltwater.

  • Switzerland: Nestled amidst the majestic Alps, Swiss hydropower plants like Grande Dixence Dam showcase incredible engineering feats. At 285 meters, it’s the tallest concrete dam in the world, holding back a vast reservoir that feeds multiple turbines.

Ingenious Networks:

  • Netherlands: In the flat, water-rich Netherlands, a different approach reigns supreme. A complex network of canals and dikes channels water through a series of smaller hydropower plants, generating electricity while also managing water levels and preventing floods.
  • Russia: Spanning across 11 time zones, Russia boasts a vast hydroelectric network, with the Sayano-Shushenskaya Dam being one of the most notable. Standing 242 meters tall, it’s the tallest dam in Russia and powers millions of homes across Siberia.

Beyond the Giants:

Beyond these giants, countless smaller hydroelectric plants dot the Eurasian landscape, each contributing to the region’s clean energy mix. From hidden turbines tucked away in mountain streams to micro-hydro installations powering remote villages, these smaller plants showcase the versatility and adaptability of hydropower.

Environmental Considerations:

While hydroelectric power offers a clean and renewable energy source, it’s not without its environmental considerations. Dam construction can disrupt ecosystems and displace communities, while altering water flow patterns can harm downstream habitats. To address these concerns, sustainable hydropower practices are crucial, including careful site selection, environmental impact assessments, and fish passage solutions.

The Future of Hydropower in Europe and Eurosia

As the world strives towards a more sustainable future, hydroelectric power is expected to play a vital role. Advancements in technology and a focus on environmental responsibility can ensure that these powerful plants continue to illuminate homes and fuel economies while respecting the delicate balance of our planet.

Table of  Hydroelectric Power Plants in Europe and Eurasia

Here’s a table summarizing some of the notable hydroelectric power plants in Europe and Eurasia, categorized by region:

Region Plant Name Country Installed Capacity (MW) River Notable Features
Northern Europe Kariba Dam Zambia/Zimbabwe 2,075 Zambezi World’s second-largest arch dam
Grand Inga Dam Democratic Republic of the Congo 3,800 (future 48,000) Congo Second-largest hydroelectric plant in the world by potential
Swass Norway 500 Begna Norway’s largest power plant
Itaipu Dam Brazil/Paraguay 14,000 Paraná Second-largest operating hydroelectric plant in the world
Western Europe Grand Dixence Dam Switzerland 2,069 Dixence Highest dam in Europe
Hoover Dam United States 2,074 Colorado Iconic dam on the US-Mexico border
Drei Schwestern Dam Austria 711 Drau Three-arch dams built side-by-side
Fort Peck Dam United States 3,600 Missouri Fifth-largest dam in the US by volume
Central Europe Dnieper Hydroelectric Station Ukraine 3,700 Dnieper Largest power plant in Ukraine
Gabčíkovo-Nagymaros Barrage System Slovakia/Hungary 722 Danube Controversial dam impacting Danube river ecosystem
Żarnowiec Pumped Storage Power Plant Poland 750 Baltic Sea Largest pumped-storage plant in Europe
Elba-Schwarze Schanze Pumped Storage Power Plant Germany 870 Elbe Highest dam in Germany
Eastern Europe Volzhskaya Hydroelectric Station Russia 5,500 Volga Largest power plant in Russia
Sayano-Shushenskaya Hydroelectric Power Station Russia 6,400 Yenisei World’s most powerful hydroelectric station by installed capacity
Dniester Hydroelectric Station Moldova/Ukraine 750 Dnister Largest power plant in Moldova
Southern Europe Grand Coulee Dam United States 6,809 Columbia Largest hydroelectric dam in the US by volume
Itaparica Dam Brazil 3,750 Paranaíba Largest power plant in Brazil
Enel-Marzolla Hydroelectric Power Plant Italy 1,620 Adige Largest power plant in Italy
Aldeadávila Dam Spain/Portugal 617 Duero Highest dam on the Duero river

Note: This is not an exhaustive list, and there are many other notable hydroelectric power plants in Europe and Eurasia. The table includes plants of varying sizes and significance, highlighting some of the region’s most impressive engineering feats and major sources of renewable energy.

Lansdcape of Hydroelectric Power Plant

Lansdcape of Hydroelectric Power Plant in South America

South America, a continent adorned with mighty rivers and cascading waterfalls, is a natural powerhouse for hydroelectric energy. Its landscape boasts an impressive array of hydropower plants, each one unique and intricately woven into the surrounding environment. Let’s embark on a journey to explore some of these remarkable feats of engineering:

The Amazonian Titan:

  • Itaipu Dam: Straddling the border between Brazil and Paraguay, Itaipu reigns supreme as the world’s second-largest hydropower plant in terms of installed capacity. This colossal dam stretches 7 kilometers across the Paraná River, creating a vast reservoir that feeds its 20 massive turbines. Imagine the awe-inspiring spectacle of witnessing the cascading waters of the Paraná River tamed by this engineering marvel.

Andean Wonders:

  • Guri Dam: Delving into the heart of Venezuela, we encounter the Guri Dam, the world’s third-largest operating hydroelectric plant. Nestled amidst the lush greenery of the Guayana Highlands, this dam harnesses the power of the Caroni River, generating electricity for millions of Venezuelans. Its intricate network of tunnels and turbines showcases a blend of power and natural beauty.
  • Mantaro Hydroelectric Complex: Nestled in the Peruvian Andes, the Mantaro Hydroelectric Complex is a testament to human ingenuity in adapting to challenging terrain. This series of four interconnected dams and power plants utilizes the steep drop of the Mantaro River, its cascading waters transforming into clean and efficient energy.

Beyond the Giants:

South America’s hydroelectric landscape extends far beyond these giants. Countless smaller plants, like the Colbun Dam in Chile and the Paulo Afonso Complex in Brazil, contribute significantly to the region’s energy mix. These smaller installations often blend seamlessly with the surrounding environment, their turbines humming away discreetly amidst the lush greenery.

Environmental Considerations:

While hydroelectric power offers a clean and renewable energy source, it’s crucial to acknowledge its potential environmental impact. Dam construction can disrupt ecosystems and displace communities, and altering water flow patterns can affect downstream habitats. South America is particularly sensitive to these concerns, with the Amazon rainforest ecosystem requiring careful consideration. Sustainable hydropower practices, including ecological impact assessments and community engagement, are essential to ensure that these plants become true partners in the region’s development.

The Future of South American Hydro:

As South America strives for a sustainable future, hydropower is expected to remain a vital player. Technological advancements can optimize efficiency and minimize environmental impact, while focusing on smaller-scale, community-driven projects can empower local populations. By harnessing the power of its rivers responsibly, South America can illuminate its cities and villages while preserving the breathtaking natural beauty that defines its landscape.

Table of Hydroelectric Power Plant in South America

Here is  Table of Hydroelectric Power Plants in South America

South America boasts a significant number of impressive hydroelectric power plants, harnessing the power of its mighty rivers and waterfalls for clean energy generation. Here’s a table summarizing some notable examples:

Plant Name Country Installed Capacity (MW) River Notable Features
Itaipu Dam Brazil/Paraguay 14,000 Paraná Second-largest operating hydroelectric plant in the world
Guri Dam Venezuela 10,200 Caroní Fourth-largest hydroelectric plant in the world
Yacyretá Dam Argentina/Paraguay 3,100 Paraná Seventh-largest hydroelectric plant in the world
Tucuruí Dam Brazil 8,370 Tocantins Largest fully concrete dam in the world
Belo Monte Dam Brazil 11,233 Xingu Controversial dam for its environmental and social impacts
Salto Grande Dam Brazil/Uruguay 1,890 Uruguay First bi-national hydroelectric project in South America
El Chocón Dam Argentina 2,200 Limay Largest dam in Argentina
Furnas Hydroelectric Power Plant Brazil 1,275 Grande First major hydroelectric project in Brazil
Macagua Hydroelectric Power Plant Colombia 3,400 Meta Largest hydroelectric plant in Colombia
Jirau Hydroelectric Power Plant Brazil 3,750 Madeira Controversial dam for its impact on indigenous communities
Itaparica Dam Brazil 3,750 Paranaíba Largest power plant in Brazil
Capanda Dam Angola 5,700 Cuanza Largest hydroelectric plant in Angola

Note: This list highlights some of the largest and most notable power plants, but there are many other significant hydroelectric projects throughout South America. The table includes plants with diverse capacities and features, showcasing the region’s reliance on this important renewable energy source.

Lansdcape of Hydroelectric Power Plant

Lansdcape of Hydroelectric Power Plant in North America

Harnessing the Might of Water: A Look at North America’s Hydroelectric Power Plants

North America, a land of soaring mountains, mighty rivers, and cascading waterfalls, is home to a diverse landscape of hydroelectric power plants. These sentinels of clean energy stand tall, harnessing the power of water to illuminate homes and fuel economies across the continent. From the towering dams of the Pacific Northwest to the ancient wheels of the Northeast, let’s dive into the fascinating world of North American hydropower:

Giants of the West:

  • Grand Coulee Dam: In the heart of Washington, the Grand Coulee Dam reigns supreme as the largest hydroelectric plant in the United States. This titan of concrete stretches across the mighty Columbia River, its 553-foot-high walls holding back a vast, shimmering reservoir. Imagine the awe-inspiring sight of water cascading over the dam’s spillways, its force generating enough electricity to power over 6 million homes.
  • Hoover Dam: Standing guard on the border between Nevada and Arizona, the Hoover Dam is not only an engineering marvel but also a historical landmark. This iconic dam tames the Colorado River, generating clean power for millions while creating Lake Mead, a vast recreational haven. Its graceful Art Deco architecture and awe-inspiring scale make it a true symbol of American ingenuity.

Harnessing the Past:

  • Niagara Falls: While not the largest, Niagara Falls is undoubtedly one of the most iconic hydropower generators in North America. The cascading waters of this natural wonder have been harnessed for over a century, powering both the United States and Canada with clean energy. Imagine the thunderous roar and mesmerizing beauty of the falls, their raw power harnessed to illuminate homes and fuel industry.
  • Franciscan Dam: In Massachusetts, the Franciscan Dam stands as a testament to the early days of American hydropower. Built in 1895, it’s one of the oldest operating dams in the country, its brick and stone construction a reminder of the pioneers who paved the way for modern hydroelectricity.

Beyond the Giants:

Beyond these iconic landmarks, countless smaller hydroelectric plants dot the North American landscape. From the intricate canal systems of New England to the hidden turbines tucked away in mountain streams, these smaller installations showcase the versatility and adaptability of hydropower. They provide clean energy to rural communities, power vital infrastructure, and contribute to the region’s overall renewable energy mix.

Environmental Considerations:

While hydropower offers a clean and renewable energy source, it’s crucial to acknowledge its potential environmental impact. Dam construction can disrupt ecosystems and displace communities, while altering water flow patterns can harm downstream habitats. North America is no exception, with concerns about salmon populations and riverine ecosystems facing careful consideration. Sustainable hydropower practices, including fish passage solutions and environmental impact assessments, are essential to ensure these plants operate in harmony with the environment.

The Future of North American Hydro:

As North America strives towards a more sustainable future, hydropower is expected to remain a vital player. Technological advancements can optimize efficiency and minimize environmental impact, while focusing on smaller-scale, community-driven projects can empower local populations. By harnessing the power of its rivers responsibly, North America can illuminate its cities and towns while preserving the breathtaking natural beauty that defines its landscape.

Table of of Hydroelectric Power Plant in North America

Hydroelectric Power Plants in North America:

North America boasts a diverse range of hydroelectric power plants, utilizing the continent’s mighty rivers and immense water resources. Here’s a table summarizing some notable examples, categorized by country:

Country Plant Name Installed Capacity (MW) River Notable Features
Canada Grand Falls Hydroelectric Station 532 Churchill Largest underground hydroelectric plant in the world
Robert-Bourassa Dam (James Bay Project) 5,616 La Grande World’s third-largest hydroelectric dam complex
Churchill Falls (Lower Falls) 542 Churchill Major source of clean energy for Newfoundland and Labrador
Niagara Falls Power Station 2,475 Niagara Iconic plant harnessing the power of Niagara Falls
Wapaiti Dam 767 Churchill First major hydroelectric project in Manitoba
United States Grand Coulee Dam 6,809 Columbia Largest hydroelectric dam in the US by volume
Hoover Dam 2,074 Colorado Iconic dam on the US-Mexico border
Tennessee Valley Authority (TVA) System 13,000+ Various (Tennessee, Cumberland, etc.) Extensive network of dams providing power to a large region
Niagara Falls Power Station (US side) 1,250 Niagara Significant contributor to New York state’s power grid
Fort Peck Dam 3,600 Missouri Fifth-largest dam in the US by volume
Mexico La Yesca Dam 850 Santiago Largest hydroelectric plant in Mexico
El Infiernillo Dam 1,123 Balsas Second-largest hydroelectric plant in Mexico
Malpaso Dam 750 Grijalva Third-largest hydroelectric plant in Mexico

Note: This is not an exhaustive list, and countless other notable hydroelectric projects exist across North America. The table showcases plants of diverse sizes and features, highlighting the region’s significant reliance and potential for clean energy generation through hydropower.

Lansdcape of Hydroelectric Power Plant

Lansdcape of Hydroelectric Power Plant in Africa and Midle East

Harnessing the Nile and Beyond: Exploring the Hydroelectric Landscape of Africa and the Middle East

From the mighty Nile slicing through deserts to the cascading mountain rivers of Ethiopia, Africa and the Middle East offer a diverse and evolving landscape of hydroelectric power plants. These vital contributors to the region’s energy mix stand as testaments to ingenuity and adaptation, harnessing the power of water to illuminate homes, fuel industries, and drive development.

Nile’s Legacy:

  • Aswan High Dam: Egypt’s crown jewel, the Aswan High Dam on the Nile River, stands as a symbol of both progress and controversy. This colossal structure tamed the once-unpredictable river, generating electricity for millions but also displacing communities and altering the river’s ecosystem. Its story highlights the complex interplay between energy needs and environmental considerations.

Ethiopian Highlands:

  • Grand Ethiopian Renaissance Dam (GERD): Sitting on the Blue Nile in Ethiopia, the GERD is the largest hydroelectric plant in Africa, promising to be a game-changer for the region’s energy landscape. However, its construction triggered concerns from downstream nations like Egypt, raising complex geopolitical issues surrounding water rights and dam management.

Beyond the Giants:

Africa and the Middle East boast a multitude of smaller hydropower plants, each tailored to the unique challenges and opportunities of their location. From the intricate systems in Morocco utilizing cascading rivers to the community-driven projects in Kenya harnessing micro-hydropower, these diverse installations showcase the adaptability and potential of hydro energy in the region.

Challenges and Opportunities:

The landscape of hydropower in Africa and the Middle East is not without its challenges. Political instability, limited infrastructure, and environmental concerns can hinder development. However, technological advancements, partnerships between nations, and a focus on sustainable practices offer promising opportunities for growth. With careful planning and responsible management, hydroelectricity can play a vital role in powering a brighter future for the region.

The Evolving Future:

As Africa and the Middle East strive towards sustainable development, hydroelectricity is expected to remain a key player. Advancements in efficiency, integration with renewable energy sources, and a focus on community-driven projects can ensure that these plants contribute not only to energy security but also to local development and environmental protection. By respecting the delicate balance between human needs and ecological well-being, the region can harness the power of its rivers to illuminate a brighter future, powered by clean energy and sustainable practices.

Table of  Hydroelectric Power Plant in Africa and Midle East

Hydroelectric Power Plants in Africa and the Middle East:

Harnessing the power of mighty rivers and unique geographical features, both Africa and the Middle East possess notable hydroelectric power plants. Here’s a table summarizing some key examples:

Africa:

Country Plant Name Installed Capacity (MW) River Notable Features
Ethiopia Grand Ethiopian Renaissance Dam (GERD) 5,150 (future 6,450) Blue Nile Largest hydroelectric plant in Africa (under construction)
Egypt High Aswan Dam 2,100 Nile Largest dam in Africa
Angola Capanda Dam 5,700 Cuanza Largest hydroelectric plant in Angola
Democratic Republic of the Congo Inga Dams (Inga I, II, III) 3,800 (future 48,000) Congo Second-largest hydropower potential in the world
South Africa Hendrik Verwoerd Dam (Gariep Dam) 332 Orange Largest power station in South Africa
Zambia/ Zimbabwe Kariba Dam 2,075 Zambezi Second-largest arch dam in the world
Kenya Gitaru Hydropower Station 85 Tana First major hydroelectric project in Kenya
Nigeria Kainji Dam 750 Niger Largest hydroelectric plant in Nigeria
Ghana Akosombo Dam 1,020 Volta Largest hydroelectric plant in Ghana
Morocco Moulay Youssef Dam 670 Oum Er-Rbia Largest hydroelectric plant in Morocco

Middle East:

Country Plant Name Installed Capacity (MW) River Notable Features
Turkey Atatürk Dam 2,480 Euphrates Largest hydroelectric plant in Turkey
Iran Karun-3 Dam 964 Karun Largest hydroelectric plant in Iran
Syria/ Turkey Tabqa Dam 800 Euphrates Largest dam in Syria
Iraq/ Turkey Mosul Dam 1,120 Tigris Largest dam in Iraq
Lebanon Qaraoun Dam 120 Litani Largest hydroelectric plant in Lebanon
Jordan King Abdullah Canal Pumped Storage Power Plant 890 Dead Sea Largest pumped-storage plant in the Middle East
Oman Wadi Ghul Hydropower Station 66 Wadi Ghul First major hydroelectric project in Oman

Note: This list highlights some prominent examples, with many other significant hydroelectric projects throughout both regions. It showcases plants of diverse capacities and features, reflecting the varied utilization of hydropower across Africa and the Middle East.

Lansdcape of Hydroelectric Power Plant

Conclusion Lansdcape of Hydroelectric Power Plant

Hydroelectric Power: A Global Tapestry of Energy and Challenges

Across the globe, from the towering dams of Norway to the intricate canal systems of the Netherlands, hydroelectric power plants paint a diverse landscape of clean energy generation

These sentinels of progress harness the might of water, illuminating homes, fueling industries, and driving development in countless corners of the world.

A Tapestry of Giants:

  • Europe and Eurasia: From the behemoths like Norway’s Svartefoss Dam and Switzerland’s Grande Dixence to the intricate networks of the Netherlands, the region showcases both large-scale engineering marvels and innovative adaptation.

  • South America: The Amazonian titan Itaipu and the Andean wonders like Guri Dam and Mantaro Complex reveal the continent’s immense potential, while smaller installations weave seamlessly into the lush greenery.

  • North America: The iconic giants like Grand Coulee and Hoover Dam stand tall, while the thunderous Niagara Falls and historical Franciscan Dam remind us of both the power and history of hydropower.

  • Africa and the Middle East: The Nile’s legacy embodied in the Aswan High Dam and the future potential of the Grand Ethiopian Renaissance Dam highlight the region’s evolving hydro landscape, alongside smaller projects fostering local development.

Beyond the Gigawatts:

While the large dams capture the imagination, the true landscape of hydropower extends far beyond. Countless smaller plants, micro-hydro installations, and innovative canal systems contribute significantly to the global energy mix, proving adaptable to diverse terrains and needs.

Challenges and the Path Forward:

Hydropower, despite its clean-energy credentials, comes with environmental considerations. Dam construction can disrupt ecosystems, displace communities, and alter water flow patterns. 

Sustainable practices, environmental impact assessments, and community engagement are crucial to navigating these challenges.

Moving forward, advancements in technology like fish passage solutions and optimized turbines can minimize environmental impact. Additionally, focusing on smaller-scale, community-driven projects can empower local populations and ensure equitable access to clean energy.

A Sustainable Future:

By balancing human needs with environmental responsibility, embracing technological advancements, and fostering international cooperation, hydropower can continue to be a vital player in our clean energy future. With respect for the natural world and continued innovation, we can illuminate a brighter path, leaving a legacy of sustainable development powered by the forces of nature.

https://www.exaputra.com/2024/01/lansdcape-of-hydroelectric-power-plant.html

Renewable Energy

How to Access Government Energy Grants in VIC & NSW

Published

on

Accessing government energy grants in Victoria (VIC) and New South Wales (NSW) can help reduce energy costs and improve energy efficiency in your home or business. 

A range of government grant programs are available to assist businesses with funding energy efficiency projects. Eligibility requirements can differ significantly across programs and jurisdictions, so it is necessary to review funding guidelines. 

Whatever option you choose, you should conduct an energy audit before considering finance options. So, how do you access government energy grants in VIC and NSW? Let’s get into the details.  

2024-25 Energy Bill Relief Fund for Households and Small Businesses

What is the 2024-25 Energy Bill Relief Fund?

The Commonwealth Government, in collaboration with states and territories, is providing up to $3.5 billion in electricity bill relief for eligible households and small businesses.  

This substantial financial aid is designed to alleviate the financial pressures related to energy costs, providing relief and security. 

Victorian families will receive up to $300, while eligible small companies may receive up to $325 to assist them pay their electricity costs. Households will accept payments in quarterly instalments ($75 per quarter), while small enterprises will get a single payment ($325). 

Support for Victorian Households

Victorian households can receive up to $300 in electricity bill rebates, distributed in four quarterly payments of $75. 

To qualify for this rebate, households must: 

  • Have an active electricity account with an energy retailer for their primary residence. 
  • Use electricity solely for domestic purposes, as commercial properties are not eligible. 

The first $75 payment was issued in August 2024, with subsequent credits scheduled for: 

  • October 1, 2024 
  • January 13, 2025 
  • April 1, 2025 

Most households will automatically receive the rebate through their electricity provider, with no need for further action. This streamlined process is designed to make it as easy for households to access the financial relief they need. 

Households in Embedded Networks

Residents in embedded networks, such as caravan parks, retirement villages, and apartment buildings, can apply for the rebate via Victorian Energy Compare. These customers will receive a one-time payment of $300.  

Support for Victorian Small Businesses Eligible small businesses in Victoria will receive a one-time rebate of $325 on their electricity bill. This support is a testament to the value that small businesses bring to the community and recognition of their contribution to the economy. 

Eligible small businesses in Victoria will receive a one-time rebate of $325 on their electricity bill. 

To qualify, businesses must: 

  • Have an active ABN registered on the Australian Business Register. 
  • Be on a separately metered business tariff. 
  • Have an annual electricity consumption below 40 MWh. 

The rebates began in August 2024, and most businesses will receive the credit automatically through their electricity provider. 

Small Businesses in Embedded Networks

Businesses in embedded networks, such as those within shopping centres or apartment buildings, can apply for the one-time rebate through Victorian Energy Compare.   

Australian Government Grants and Financial Assistance| Grants and Funding

renewable energy

Find funding, loans, and support programs for your business across all levels of government at business.gov.au. 

Before applying, you can assess your readiness and learn about the grant application process to improve your chances of securing funding. For energy-related financial assistance, contact Cyanergy. 

Clean Energy Finance Corporation (CEFC)

The CEFC is a government-backed organisation designed to boost investment in the clean energy sector. It provides financing solutions to help businesses and consumers transition to energy-efficient technologies.   

CEFC programs support small businesses, manufacturers, agricultural enterprises, and commercial properties in adopting clean energy solutions. Funding is also available through co-financing partnerships with other organisations.   

CSIRO Kick-Start

CSIRO Kick-Start supports innovative Australian start-ups and small businesses in their research and development (R&D) efforts. The program offers:   

  • Assistance in defining research objectives   
  • Access to expert CSIRO researchers   
  • Matched funding to expand or reduce the cost of R&D services   

Tax Incentives for Businesses

Research and Development Tax Incentive (R&DTI)

The R&DTI offers tax offsets to encourage Australian companies to invest in research and development activities.   

Instant Asset Write-Off

The instant asset write-off allows small businesses to claim tax deductions upfront instead of depreciating assets over time.   

From July 1, 2023, to June 30, 2024, small businesses with an annual turnover of less than $10 million could immediately deduct eligible assets costing under $20,000. This threshold is applied per asset, allowing multiple assets to be written off instantly.   

On May 14, 2024, as part of the 2024–25 Budget, the government proposed extending the $20,000 instant asset write-off for another 12 months until June 30, 2025. However, this measure is still awaiting parliamentary approval.   

Using Tax Incentives to Enhance Energy Efficiency

The Energy Efficiency Council has published a guide on leveraging tax incentives to improve energy efficiency.   

The guide explains how businesses can benefit from energy upgrades and outlines tax incentives that make these investments more cost-effective. It also includes real-world examples of how companies can apply these incentives.   

State and Territory Government Grants and Support for Businesses

Australian Capital Territory (ACT)

The Sustainable Business Program offers rebates to small and medium businesses in the ACT for energy-saving upgrades, such as better heating, cooling, lighting, and refrigeration.   

  • Businesses can claim up to $10,000 (including GST).   
  • Rebates are only available for new upgrades (not ones that have already started).   
  • Eligibility rules apply.   

New South Wales (NSW)

The NSW Government provides various programs, grants, and schemes to help businesses lower their energy use.   

A popular option is Building Upgrade Finance, which allows businesses to get private funding for energy upgrades in non-strata commercial buildings. Repayments are made through the local council.   

Queensland

The Queensland Government offers several programs to help businesses save energy:   

Business Energy Savers Program: This program provides free energy audits for agricultural and large businesses and funding for energy efficiency upgrades.    

South Australia

The South Australian Government offers grants and programs to help businesses improve their energy efficiency and sustainability.   

Victoria

Sustainability Victoria provides businesses with tools and expert advice to reduce costs and improve efficiency by saving energy and materials.   

Their Energy Upgrades Tool helps businesses find funding options and calculate potential savings.   

energy bills

Tasmania

The Tasmanian Government has multiple grants and programs to help businesses cut energy costs and invest in sustainability.   

Business Energy Efficiency Scheme helps businesses that use over 150 MWh of electricity annually by supporting financing costs for energy-saving projects.   

Energy Saver Loan Scheme offers interest-free loans for purchasing and installing energy-efficient products. These loans have no setup or account-keeping fees, but late payment fees may apply.   

Mandatory Energy Efficiency and Renewable Energy Schemes 

Some businesses, mainly energy retailers, must meet specific energy efficiency or renewable energy targets under mandatory obligation schemes. These programs often allow companies to buy and trade certificates to meet their targets.   

The schemes encourage businesses to invest in clean energy by offering financial benefits and long-term savings from reduced energy use and lower emissions.   

National Scheme

Businesses that generate renewable energy on-site may qualify for Large-Scale Generation Certificates (LGCs) under the Large-Scale Renewable Energy Target (LRET) Scheme.   

  • LGCs can be sold or traded to energy retailers.   
  • To be eligible, companies must generate electricity from approved renewable sources and feed it into the grid.   

Australian Capital Territory (ACT)

The Energy Efficiency Improvement Scheme (EEIS) helps maintain progress on energy-saving goals, ensuring affordable electricity and gas savings. It also aligns the ACT’s energy regulations with those of other states.   

New South Wales (NSW)

The Energy Saving Scheme (ESS) provides financial rewards for businesses that reduce electricity use or improve energy efficiency.   

Energy retailers must obtain Energy Savings Certificates based on the amount of carbon dioxide emissions reduced.   

South Australia (SA)

The Retailer Energy Productivity Scheme (REPS) helps homes and businesses lower energy costs while improving the overall efficiency of their power systems.   

Victoria (VIC)

The Victorian Energy Upgrades (VEU) Registry is an online system.  

  • VEU manages Victorian Energy Efficiency Certificates (VEECs) for businesses.   
  • It approves new products for energy efficiency programs.   
  • It tracks the ownership and status of certificates.   

Rebates and Assistance

The energy.gov.au rebates sorter helps businesses find government rebates, grants, loans, and support programs for energy projects.    

Other Energy Financing Options

energy consumption

Environmental Upgrade Finance (EUF) / Building Upgrade Finance (BUF)

  • External financiers cover the cost of energy-efficient building upgrades.   
  • Businesses repay the loan through a council levy, which can be passed on to tenants.   
  • If the property is sold, the payments remain tied to the building.   

This finance model is available in NSW, South Australia, and Victoria. Details are on the Building Upgrade Finance website.   

Energy Performance Contracts (EPCs)

  • Energy service companies assess a building’s energy-saving potential, finance the upgrades, and guarantee lower energy bills.   
  • The cost of upgrades is repaid through the energy savings.   
  • This model benefits tenants who save on energy bills without the building owner paying upfront costs.   

Loan Financing

Businesses can get loans with repayment plans linked to the energy savings from the project.  

Leasing

Companies can lease energy-efficient equipment to avoid high upfront costs and manage upgrades within their operating budget.   

On-Bill Financing

The energy provider covers the cost of new energy-efficient equipment. Once payments are complete, businesses repay through monthly power bills and ownership transfers. Repayments are often equal to or lower than the energy cost savings achieved.   

Contact Cyanergy for more details and talk to an expert  

Your Solution Is Just a Click Away

The post How to Access Government Energy Grants in VIC & NSW appeared first on Cyanergy.

How to Access Government Energy Grants in VIC & NSW

Continue Reading

Renewable Energy

US Wind Unionization, Blade Weather Damage Insights

Published

on

Weather Guard Lightning Tech

US Wind Unionization, Blade Weather Damage Insights

This week, we cover the unionization of Vestas technicians in Michigan, and research revealing significant blade damage occurs in short but intense weather events. At the Atlantic Shores offshore farm, an environmental permit was remanded by a judge. Dermot Wind Farm in Texas, also known as the Amazon Wind Farm, is our wind farm of the week. Register for the start of our webinar series with SkySpecs!

Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on FacebookYouTubeTwitterLinkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!

You are listening to the Uptime Wind Energy Podcast, brought to you by build turbines.com. Learn, train, and be a part of the Clean Energy Revolution. Visit build turbines.com today. Now here’s your hosts, Allen Hall, Joel Saxum, Phil Totaro, and Rosemary Barnes.

Allen Hall: Before we start the program this week on March 26th.

At 11:00 AM Uptime sits down with Josh Goryl CRO of SkySpecs, and their newly appointed CEO Dave Roberts for an exclusive conversation in our new joint webinar series. You may have heard about Dave recently stepping into the role. Now’s your chance to hear from him directly and we’ll dive into what’s new at SkySpecs, the latest industry insights, and what their newest announcement means for the future of wind turbine inspections.

Wind o and m. And asset health management, so don’t miss it. Tune in on March 26th, 11:00 AM Eastern, and we’ll include the webinar registration link in the show notes. Up in Michigan, wind turbine technicians who perform operations and maintenance on Vestas turbines have voted to join the Utility Workers Union of America.

Marks the first Vestas wind technicians in North America to unionize. The 11 member group voted nine to one, so someone abstained obviously in favor of organizing and will become members of the UWUA local 2, 2 3, which also represents winex at DTE in Michigan. Now these workers are responsible for operations and maintenance on about 120 odd turbines, including MCE.

So Joel, this one’s a little unique and maybe ’cause it’s Michigan unions are really strong in Michigan, have been for a hundred years. ’cause the auto workers, and this seems like an outgrowth of that, but what is the relationship with Vestus in unions? Is that something that they have done in Europe quite often and this is just carrying over into the United States?

Or is this. An American move.

Joel Saxum: I think it’s an American move. If you look at the state of Michigan, like you said, auto workers are there. They’re heavily unionized. And because they’re heavily unionized and that state has looked at them as, they do well. It’s in good middle class incomes and, that, that’s driven some progress over the last a hundred years in Michigan. My, some of my in-laws are from Michigan and they’re boilermakers and they’re all unionized. And when they say get that union job, they’ve got it. They’ve made it right. So I understand the city or the state of Michigan and some of the ideas around there.

And I think that if you, in wind, if you were to pick a state that would’ve unionized first. Michigan would be at the top of your list probably. So I don’t think it’s a Vesta thing necessarily. I think this is a local Michigan thing, but I don’t also believe, Vesta is being a Danish company and they have, a lot of trade representation there from in all trades in that northern part of Europe.

I think that’s, it’s not abnormal to Vestas either. It’s probably abnormal to Vestas. United States Management, but Vestas as a company, eh, pretty standard thing. I’m curious to see what their package looks like, because now we’re in this era of IRA bill things, right? So we, IRA bills, apprenticeships, and white sheet wages and these kind of things to, to fulfill these needs for all these projects.

So I would. Be interested to see what the package looks like and what they’ve signed with or as a union to Vestas and to the people that you’re working for, to see if it aligns with the IRA bill.

Rosemary Barnes: What can you explain for non-Americans? What does that mean to have unionized in America? Because we have unions in Australia, but my understanding, like it must be incredibly different here than it is there.

’cause like you say, it could be, you can have a union job, like I’m pretty sure in Australia, like you are. There’s no such thing as a union job. They can’t I think they’re explicitly prohibited from discriminating based on whether you are in a union or not. Everyone has a right to join a union, but, what does a union job mean? And Yeah tell those of us who aren’t from America. What does this actually mean?

Joel Saxum: It’s different depending on the organization, the industry, the area, right? So technically same thing. It’s not, it’s, it is illegal to technically discriminate against non-union or union, however, they become such a strong presence that when, if you’re part of the union and you. Say there’s a strike going on, and then you cross that picket line, like you will be ostracized from that group of people, even though it’s technically illegal to do they’re not sanctioned by the government.

It’s all independent organizations, but they have a lot of power, the auto workers unions and stuff, like if they go on strike, they shut down gm, they shut down forward, they can’t do anything. So they have a, an insane amount of power. And it, it rolls over into, when I say good union jobs, they have good packages.

In my opinion, I’ve seen some union packages that are just crazy, right? Like I was working in Chicago and there was guys that were holding shovels clearing, clearing off manholes, and they were making $48 an hour because they were in the union. And the guy next to him that wasn’t in the union, that wasn’t working for the union company was making like 16.

And doing the same work except for after eight hours he was still working. The other guy put a shovel down one home. So there’s a give and take.

Phil Totaro: Yeah. But that’s the flip side of this as well, which is okay, there’s a benefits package that, that they offer as being part of a union, but there’s a price that’s paid for all of that.

It’s the same sort of thing with, like a government that leans a little more socialist. They’re gonna collect a lot more in tax. And then have a lot more programs for everybody that’s based on all that money that they’ve collected. But the reality of it is who do you think pays for that?

At the end of the day, that’s gonna be the asset owner and then all of us as electricity rate payers who end up, the power purchase contract price is necessarily gonna be, more than what it might have been otherwise. There’s. There’s two sides to it. And yeah, you can, you can get unionized labor and their argument with joining the union was, safety training, access to safety training, access to benefits, things they weren’t getting either from vestus or independently.

But somebody’s gotta pay for it and it’s gonna be all of us

Joel Saxum: as busy wind energy professionals. Staying informed is crucial, and let’s face it. Difficult. That’s why the Uptime podcast recommends PES WIN Magazine. PES Wind offers a diverse range of in-depth articles and expert insights that dive into the most pressing issues facing our energy future.

Whether you’re an industry veteran or new to wind, PES Wind has the high quality content you need. Don’t miss out. Visit ps win.com today.

Allen Hall: New research from the Netherlands Organization for Applied Scientific research in collaboration with offshore wind operators reveals that approximately 30% of annual wind turbine blade damage occurs during just 12 hours of harsh weather conditions.

The PROWESS project conducted. Year long, detailed measurements of precipitation in the North Sea, a pretty rough place finding that damage happens when the tip speeds reach about 325 kilometers an hour as wind speeds exceed about 63 kilometers an hour, which is pretty fast and rainfall surpasses about 7.5 millimeters per hour, which is a lot of rain.

Now, these findings have led to the creation of a erosion atlas in the. That could help wind farm operators proactively reduce turbine speeds to prevent damage. Now, I think that’s the goal everybody, is that if they know there’s certain environmental times when rain erosion is going to occur, then you basically slow the tip speeds down, which will reduce the amount of erosion.

Maybe I’m missing some of this. Rosemary, I know you’ve heard the same story that you can slow the tip speeds down when the rainfall is really high and the wind speeds are really high. And sure you can reduce the amount of erosion, but it’s still a problem.

Rosemary Barnes: And I haven’t seen this this atlas, is it just for the North Sea is is it just Europe?

Europe,

Joel Saxum: TTU was working on one to cover all of Europe.

Allen Hall: Yes, they were. Yeah, I haven’t seen it yet, but it maybe out.

Rosemary Barnes: One of the things that I’ve been working on. Recently with a few different clients is leading edge erosion in Australia. And just noting that we don’t see things behave the same way that they do in Europe.

And one of the reasons is, or that I suspect actually I don’t suspect, I know I’ve back backed up with data, that we have much higher rainfall intensity and a lot of places and. Australia. Like I just know that from living here. When I lived in Denmark when I moved to Denmark I checked the climate data before moving to see, things like, oh, what’s the annual rainfall and how does it compare?

And it wasn’t so different to a lot of parts of Australia. And in fact, it’s less than a lot of parts of Australia. I’m like, oh, okay, it’s not gonna be that bad. But when you actually live there, like in Australia, it rains and it rains. Like it’s not joking around. It is raining. But whereas when you.

In Denmark it’s just always drizzling, just I don’t know, definitely more than 50% of the time. It’s just it’s raining a little bit. And sometimes I would call it static rain. It’s it’s technically not raining, but if you go outside, you will get wet because it’s just there’s, it’s just there’s so much moisture in the air.

So I, and yeah, so I noticed. Then like a lot of the traditional ways to assess how severe your leading edge your site is for leading edge erosion. You have a look at you average wind speed, the tip speed of the blade and the annual rainfall of a site. And I just noticed I don’t know, I.

500 bill of rainfall in a year is not the same in Europe as it is in Australia. And not all Europe is the same. There are some places like in Scotland where they have like big fat, heavy rain droplets. But what was the amount that you said was the threshold? How, what was the rainfall intensity?

Allen Hall: No I think I said three inches in arrow.

That’s not right. I think it’s 0.3 inches an hour or 7.5 millimeters.

Rosemary Barnes: Okay. So I have I, I. I collected data for a bunch of Australian sites with their one minute. One minute rainfall record, or it’s like the average amount that they get every five years that will get in rainfall intensity of one in one minute of four, four millimeters in one minute.

So that’s like half of what you’re saying in an hour. We’re getting in a minute. So it’s 30 times, 30 times more. There are sites in Australia, they’re getting 30 times more than intense rain than that. So yeah, just I guess just look a little, another little bit of. Bit of evidence that Australia has in intense rainfall.

That’s why we have so much flooding. It just, it suddenly the tap turns on and you’ve got it’s the inverted ocean kind of situation where it’s just all of a sudden Yeah. Like above ground is wet now. It’s, yeah, it’s just water.

Joel Saxum: I thinking about that sometimes, like in, in Texas, the way it rains, like in Houston when it rains, like seven and a half millimeters an hour is nothing.

I’ve been in Houston before where they’ve gotten 10 inches of rain in an hour. That would be 250 millimeters in an hour. That’s 80, 80 times that.

Rosemary Barnes: That’s, so that’s what I mean. Maybe the numbers are wrong. We should probably, have all of read the paper and done some calculations before we started talking.

Allen Hall: There’s just two articles that say the same thing.

Rosemary Barnes: I, that’s that kind of like reinforces that Europe is the wrong place to do this study or to get this benefit, right? Like you get the benefit where because it’s only, it’s not. That huge amount of erosion that you’re gonna stop by, having that threshold in Europe, but like in Texas or in Queensland, you would be able to very easily cut out the extremely intense rain events I bet are doing way more.

’cause like I, I often see on Australia and wind farms erosion leading edge protection that is destroyed. A year after it was last replaced or two years after, and I bet that you could stop that by just turning the turbine off for the super intense rain. So I’ve been trying to convince clients to, to start looking at this.

It’s hard when the. My client, the owner of the wind farm, doesn’t actually control the operation of the wind farm. So that’s the biggest challenge isn’t the potential of a, technological capability to do it. It’s it’s a matter of who, who would go to the effort to doing this versus who gets the benefit from it.

Joel Saxum: There’s two interesting things here too just when I was looking at this leading edge erosion problem with rain mapping and stuff at a previous life. One of the things I didn’t think about right away is actually why it’s so bad is because as that turbine spins, you’re actually going this waterfall is measured in a single water column that hits, say, the ground.

Well, 7.5 millimeters an hour, but that turbine blade is experiencing like 15 times that because it’s chasing the rain down and then hitting it, going back up again and hitting. It’s in engaging with the rain constantly and that’s why it causes so much damage.

Phil Totaro: Yeah. Particularly a high tip speed ratio and it’s the almost like what you get on a helicopter rotor in, a brownout condition.

It’s

Joel Saxum: yeah. And we’re talking just rain erosion here, right? Like this whole, I just talked to an operator in West Texas an hour ago, and he said that sandstorm craziness that blew through there on Sunday hasn’t let up. He’s still at 45 mile an hour. Wind with sand blowing so fast, you can’t see across the o and m parking lot.

And this is in like by San Angelo.

Allen Hall: I saw that. Global Blade Group is over at Eros this week and they’re talking leading edge repairs for erosion and looking at the Eros robot and how they do it. And there’s a number of operators that are at Arons with that global. Playgroup and Berg junker. Obviously leading edge erosion is still a problem.

There hasn’t been a universal solution, but it does look like different parts of the world have different kinds of raindrops and maybe it’s a temperature aspect. Also, it’s definitely gonna be colder in Northern Europe and. Typically in Australia.

Rosemary Barnes: Yeah. Another thing we struggle with in Australia is the UV here is so much more intense and so like a lot of things just don’t stay put or stay intact regardless of erosion.

You, if the adhesive degrades under you. UV of salt, then yeah, things don’t last because of that. So I would really love to see more erosion test facilities doing things like temperature cycling. That’s another thing. You get really hot, really cold temperatures here, much more than in Europe where it’s less diagonal variation.

Yeah, put a UV lamp in your facility and they look after us in Australia.

Allen Hall: GTU has a new rain RO facility in Ross Gilda. That facility, they can change the temperature of the water. It’s one of the variables they added to their rain erosion test facility, which plays into the result. I’m really curious about that because in the rain erosion testing that we have done over a number of years now, 15 plus years, you can tell the difference between cold water and warm water.

It is noticeable.

Rosemary Barnes: Oh, interesting. I think thermal cycling though, is a thing as well. Just even the yeah, the temperature of the blade heating up and cooling down every single day. I think that, that doesn’t help. There’s so much going on. We’ve seen these simple erosion site assessment maps that use like one or two parameters, and even this new study is, similar.

Just a couple of things, but it’s like that. You can find some good correlations, but it’s not like there’s a lot of ways to have a bad, there’s only one way to have a good site for erosion, which is to have, not much rain, small droplets, not high wind speeds. Oh, that’s not great for you.

Your site in general? No, no dust, no salt water. But any one of those things can be really bad. So it’s yeah, like making a map is really hard. You need to have like a series, I think a series of maps for looking at each parameter. And I don’t think that we have remotely figured out what all the parameters are that affect it, and then the next step is actually the testing for leading edge erosion products for leading edge protection products needs to include all of those parameters, which it currently doesn’t. It’s like basically that they’ll change the speed and the rainfall. The, yeah the speed of the rain, the how this volume of the rain and now we became, so there’s a facility that can change the temperature of the rain, but there are so many more things that we need to include before you can it’s one thing to know.

Yeah, like your product will perform under these conditions, but that’s not what in the real world. And nowhere in the world are we seeing leading edge protection perform in the way that the test results suggests that they should, which means it’s just currently wrong. Really need to get more in depth on erosion testing.

Joel Saxum: How much money do you think the wind industry has chased or spent testing LEP and trying to figure out this leading edge erosion problem? From grant funding and all these different things. ’cause I constantly see Alan. We were talking about this the other day about. How mu have, how have we not solved leading edge erosion yet we’ve hit this project and that project and this university and that grant funding and this EUDP thing and ORE catapult this.

Rosemary Barnes: Yeah. And the OEMs are putting their own money into it too. They’re not just, waiting around for grant funding. It’s people being. Trying hard. I personally think that they’ve been too, it’s been too Eurocentric. The the research and development and, yeah. My company is too small to embark on a research program, but I’m so confident that we could do much, much better for Australian leading edge protection if we would do a proper test program that represented the, conditions that we actually face in Australia.

And that’s that, that’s true, not just for leading edge ion. There’s a whole range of. Things that we would get Australian Wind Farms performing way better if we would, do some of that development here. And I’m sure that Texas or some of the more extreme locations within the US is probably ex exactly the same.

And I know you do have some research organizations doing stuff over there, but yeah, I would really love to have a, give me a couple of million dollars and I will, I’ll solve this problem.

Allen Hall: Just call RD test systems and they will. Send over one of their latest and greatest rain erosion testers.

That’s the way to do it. That test equipment is outstanding. The issue is there’s so many variables that’s the problem, and you have to try to take them one at a time and solve it. And obviously Australia’s different than Northern Europe. It just is and Joel’s pointed out numerous times. It’s not necessarily the water, it’s what’s in the water a lot of times is dirt and debris, which is an abrasive and it changes everything really.

Everything. Plus yet on the UV amount of UV in Australia, and I agree with you, Rosemary Australia has aggressive sunlight. It does a lot more damage there than in Denmark. Don’t let blade damage catch you off guard. OGs. Ping sensors detect issues before they become expensive. Time consuming problems from ice buildup and lightning strikes to pitch misalignment in internal blade cracks.

OGs Ping has you covered The cutting edge sensors are easy to install, giving you the power to stop damage before it’s too late. Visit eLog ping.com and take control of your turbine’s health. Today. There’s big news off the shores of New Jersey Environmental Appeals Court Judge Mary Kay Lynch has ruled to remand a cleaner act permit issued to Atlantic Shores offshore wind.

Back to the US Environmental Protection Agency. The EPA filed a motion in February to review the Wind Energy projects, environmental impacts in response to. President Trump’s January memorandum to withdraw offshore wind leases for further review. Now, this setback follows shell’s withdrawal from the Atlantic Shores Project in January where the company reported a roughly $1 billion loss associated with the plan.

2,800 megawatt array off of Long Beach Island and Entine. Now, Phil, this permit. Poll is actually a result of a lawsuit which opened the door for the EPA to pull the permit. You wanna explain the logistics of this? So

Phil Totaro: effectively the lawsuit triggered a reevaluation of the the. Way in which the permit review was undertaken, the process that they followed.

And what the judge is effectively saying is that there was cause to uh, suggest that the process according to the EPA rules was not. Properly followed. And what that did is it allowed the EPA to pull the permit for a project that, I’m not sure if there was for knowledge of this.

And that’s why, ’cause you mentioned Shell pulled out EDF also pulled out, which was the other partner in the project. So it, the project, I don’t know if the project was already dead and they’re just putting a nail in the coffin or these companies pulled out because they felt like. This this ruling wasn’t gonna go their way.

But it’s. Concerning considering that, this was a process that was, done in a hurry at the end of, president Biden’s term where a lot of things, EPA reviews, Boeing reviews, a lot of permits were being issued for offshore wind to try and get things going.

The assumption being that if they had all those permits in place. They could just get on with business and get to building their projects. But it seems as though that’s not the case. And it, it’s, bad news for Atlantic Shores, which obviously seems dead now.

But there’s 19 gigawatts worth of other projects that are still, theoretically in the pipeline that could be built. And we’ll see if they actually get built.

Allen Hall: So that permit dealt with air pollutant emissions from the project during the pile driving construction phase, and its impact on the Brittin National Wilderness Area, which is just offshore of the coast of New Jersey.

Where they have limitations on air quality degradation. And my comment to Joel before we started the podcast was what kind of air quality pollutants are being emitted during pilot driving besides the ships? Driving the piles. Is there something else that I’m missing here? And would it matter all that much in the big scheme of things?

Joel Saxum: There’s two things, right? You have just the simple noise, pollution, right from boom. And some of times you have a little vibration in there, but that’s the only thing that happens there. And you can hear that a long ways away. But that’s not gonna affect anything. I’m not an EPA specialist, I’m not a noise specialist.

Maybe we should have Matthew Stead talk about this, but that, simple pounding is one thing, and that seems to be so minimal to me because, regular construction onshore is happening. It’s the guy’s putting a new roof on the house next door, pounding away, sounds like that, but it’s miles away.

And the other thing would be just emissions from the vessels that are out there. However, when you’re ve have a vessel out there for construction, it’s gonna be either one jack or one. A steady vessel doing pile driving, one work vessel and maybe a CTV or maybe a work boat. So maybe three vessels out there, max.

And if you’re managing it with a helicopter, maybe a helicopter. But it seems to me here that this is a, just a kind of a grab at some. Process problem and not an actual problem because it doesn’t seem like that’s an actual problem to me and either of these noise emission things.

Allen Hall: I actually looked this up, Joel.

It says the Brier wilderness area. Is a class one air quality area within the refuge, which protects it from manmade air pollution. And that means that they’re monitoring the air at that site all the time. Us Fish and Wildlife Surface is doing the monitoring there. But I assume there’s ships and all kinds of things just rolling right by there for emissions.

Joel Saxum: Yeah, that’s what it says. Okay, so tell ’em. They tell ’em they can’t have the vessel idled up when the wind is blowing east to west.

Allen Hall: That’s the weird part. What would the report have said that would, or what would’ve been in the report that was an error that would say there’s a lot of human made pollution landing on entine.

That, that doesn’t even make a lot of sense to me.

Rosemary Barnes: That’s gotta be shipping emissions. It’s not like it’s bringing up dust that escapes the earth’s, the, sorry, the water’s surface. How far is the wind site

Phil Totaro: from Entine? It’s a couple of miles. Yeah, it’s, no, it’s at least 10. If it’s in the shelf, there are 12 if it’s in the outer continental shelf.

But the look folks the real issue here. Is that this is what is likely to start happening more and more with any of the remaining wind farms, even if they’re under construction. Before, in, in Biden’s term, there were matters that were in the courts and they were getting dismissed because, the judges were, this isn’t supposed to happen, but the judges were being, told what to do.

The judge is theoretically supposed to rule independently, we all know how the system works. So nowadays they are, and the Justice Department used to be providing support to the defendants of all these kind of lawsuits. There have been lawsuits on vineyard, wind, there have been lawsuits on revolution on, pick every project you can name, and there’s been a lawsuit against it from one party or another.

Whether it’s Save the Whales or EPA or whatever. And the bottom line here is that this is what’s gonna be happening now in the new world order that we find ourselves in. They are gonna nitpick any stupid little thing in all of these little lawsuits that we’re getting tossed out before are gonna have legs.

Now

Rosemary Barnes: I’ve I’ve heard. Rumors that it’s potentially even more widespread than that, and not just offshore and things that are still working on permits, maybe projects that are already under construction. Like any kind of government involvement that you need, whether it’s just I don’t know, potentially even something as simple as you need a road closure to get some stuff on site.

That government departments are just simply not looking at those things. And so they just can’t progress. And I have heard that some developers considering maybe already have that, just putting a pause on anything that’s not started, pause it for four years so that, ’cause the worst thing is to get partway through a project and not be able to finish it.

Because then it’s gonna. It cost you more to restart it than it would be to just, pause it at the start. At least you can, start again from a clean slate and get everything done at once. So I think that, yeah, even though, like on the first blush of it, like there weren’t any executive orders or any, legislation that’s been passed that has.

On the face of it affected onshore wind all that much. I think that people are starting to realize that it could really slow that down as well.

Phil Totaro: Yeah, the only, so far, the only one that executive order that was passed for onshore was no renewable energy development on federal lands. That’s only affecting out of 32 or so gigawatts of wind energy in the.

Realistic project pipeline I’ll call it the stuff that’s actually likely to get built, that’s only gonna affect about six or seven gigawatts. It’s not an insubstantial percentage, but, at the end of the day, again it’s delaying things. It’s not totally stopping them.

But it’s concerning. In that offshore is much more expensive to develop, much more, time consuming to develop and whereas it was already a klugy process before, this is making it, a hundred times worse.

Joel Saxum: This week’s wind Farm of the week is the Dermot Wind Farm, which is owned by Osted, also called the Amazon Wind Farm.

So this thing was commissioned back in 2017 and commissioned in a special way. Jeff Bezos actually climbed to the top of a wind turbine and broke a bottle of champagne Oh. On one of the the attachment points up top. So he I’m hoping he was. Climb, safe, trained and everything to be up there as well.

But there was 110 GE 2.31 16 machines out there. It’s a 253 megawatt wind farm, and one of the focuses of this wind farm is a focus that if you pay attention to the energy markets, you’ve heard lately, there hasn’t been a huge spike in demand in energy in the United States. In the last 20, 30 years.

But now just in the last few and looking forward because of data centers and all these different things there, there is this forecasted spike of energy wanted. So thinking a little bit ahead of time, Amazon back in 2017 started investing in a lot of renewable energy projects. So this one is one of their 600 renewable energy projects across the globe right now.

Which is a pretty freaking large number. So this project has provided over $3 million in landowner payments and property taxes. And so it gives back to the local communities enough to power 74,000 homes annually. And it’s out by Abilene, Texas. So a little bit more about what Amazon is doing in the renewable energy space is they’ve invested over $12.6 billion.

Since 2014 in renewable energies. So the Dermot Wind Farm owned by Sted out in the central part of Texas. You are our wind farm of the week. I.

Allen Hall: That’s gonna do it for this week’s Uptime Wind Energy podcast. And thanks for listening. Please give us a five star rating on your podcast platform and subscribe in the show notes below to Uptime Tech News or substack weekly newsletter and register for that Sky Specs webinar.

You won’t wanna miss it. And we’ll see you here next week on the Uptime Wind Energy Podcast.

https://weatherguardwind.com/unionization-damage-atlantic-shores/

Continue Reading

Renewable Energy

CIP Offshore in Taiwan, RWE Buys GE Vernova for Texas

Published

on

Weather Guard Lightning Tech

CIP Offshore in Taiwan, RWE Buys GE Vernova for Texas

CIP achieves financial closure for an offshore wind project in Taiwan and the UK may shift towards a domestic offshore wind supply chain. GE Vernova plans to equip two RWE farms in Texas, and Masdar will potentially acquire TotalEnergies’ renewable assets in Portugal. Register for the start of our webinar series with SkySpecs!

Fill out our Uptime listener survey and enter to win an Uptime mug!

Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!

Welcome to Uptime Newsflash, industry News Lightning fast. For market intelligence that generates revenue, visit www.intelstor.com.

Allen Hall: Starting off the week, Copenhagen Infrastructure Partners has secured financial close on the 495 megawatt Fengmiao offshore wind project off Taiwan’s Coast. This Marks CIP’s third offshore wind project in Taiwan and is the first of Taiwan’s round three projects to start construction.

The project secured approximately $3.1 billion in financing from 27 banks with debt partially guaranteed by export credit agencies. Now Vestas will supply 33 of its latest 15 megawatt turbines for the projects and construction will finish by late 2027 with six corporate customers already signed for long-term power purchase agreements covering its entire capacity. Dan McGrail Interim, CEO of Britain’s new state owned GB Energy believes the UK should challenge oversee renewable energy companies by exporting its expertise globally. McGrail sees floating offshore wind as a huge opportunity for British technology leveraging existing supply chains from the oil and gas industry.

He aims to shift focus from importing parts to building them domestically, which could create an export industry over time. GE Vernova will equip two RWE farms in Texas with over 100 turbines with deliveries beginning later this year. The projects will help RWE surpass one gigawatt of rebuilt and repowered wind capacity across the US and generate enough electricity to power approximately 85,000 Texas homes and businesses annually. Boosting US content. Then the sales for the project will be manufactured at GE Vernova’s Florida facility, which employs about 20% Veterans.

RWE’s Chief Operating Officer emphasized their commitment to American energy production and strengthening domestic manufacturing and supply chains. GE Vernova’s Entre Wind Division currently has a total installed base of 56,000 turbines worldwide with nearly 120 gigawatts of installed capacity.

Abu Dhabi’s Masdar is considering acquiring a stake and total energy’s Portuguese renewable energy assets. The deal will likely be through SATA yield. The Green Energy Company masar purchased from Brookfield last year. This would add to MAs dollar’s growing European portfolio, which includes recent acquisitions in Spain and Greece as the company works towards its global target of 100 gigawatts by 2030.

Total Energy is currently has about 600 megawatts of installed renewable capacity in Portugal, mostly higher valued wind power assets. Total energy. CEO previously mentioned plans to divest around two gigawatts annually as part of portfolio consolidation. And that wraps up our wind industry headlines from Monday, March 24th. The conversation continues tomorrow on the Uptime Wind Energy Podcast, where we’ll explore even more insights shaping the future of renewable energy.

And don’t forget to join our exclusive live webinar this Wednesday featuring Sky Specs New CEO Dave Roberts. He’ll be sharing his roadmap for the company’s exciting future. All access details are awaiting for you in the show notes.

https://weatherguardwind.com/cip-taiwan-rwe-ge-vernova/

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com