Connect with us

Published

on

Weather Guard Lightning Tech

Blade Failure Alert: How ONYX Prevents Million-Dollar Disasters

ONYX Insight‘s ecoPITCH system prevents catastrophic wind turbine blade failures caused by pitch bearing issues. Forrest French and Martin McLarnon reveal how continuous monitoring and early detection can save wind farms millions.

Contact Martin McLarnon: martin.mclarnon@onyxinsight.com

Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on FacebookYouTubeTwitterLinkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!

Allen Hall: ONYX Insight’s ecoPITCH monitoring system has become crucial for wind farm operators facing blade root insert failures. These failures start invisibly but can end catastrophically with blades detaching completely. This week we speak with Forrest French Senior Project Engineer, and Martin McLarnon, sales Director for North America at ONYX Insight.

Their ecoPITCH system detects dangerous movements before visible signs appear as Forest notes in the interview. By the time you can get a feeler gauge measurement, it’s probably too late. So join us to discover how data-driven monitoring is helping operators make smarter maintenance decisions preventing million dollar disasters and keeping turbines spinning safely.

Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the progress powering tomorrow.

Allen Hall: Martin and Forest. Welcome to the [00:01:00] show. Hello. How’s it going? Thanks for letting us. Yeah, we’re really interested to, to talk to you today just because there’s so many blade root issues from pitch bearings and blade bushings or inserts as they’re called sometimes, and a number of other issues. And when we talk to operators, what they tell us is, oh, we, you use ecoPITCH.

And they love that system. But I want to, I wanna back up first and talk about what are some of the operators experiencing out there in the field And ecoPITCH system was originally developed to look at pitch bearing problems and forests. What are some of those pitch bearing problems you’re seeing out in the field today?

Forrest French: Yeah, so it, it, it’s a funny story. It was originally developed for pitch bearing, uh, applications. Um, the industry as a whole started experiencing this root insert issue, so we were able to, we were kind of in a perfect position, right? It was, it was a, it was a [00:02:00] really serendipitous thing that we, we had just developed this product and we could easily pivot.

To measure both the pitch bearing and this root insert issue. Uh, the, the pitch bearing issues are admittedly the, the more difficult, uh, issue, right? To measure. Um, there’s, there’s some, some great opportunities for value and there’s also some really good challenges to come along with that. Um, pitch bearings, uh, they, they don’t rotate quickly.

Right. Uh, when, when we talk about typical CMS typical vibration monitoring, you’re looking at a very, very fast rotating, uh, shaft or bearing, et cetera, and you’re able to pick up on those frequencies as they revolve. You don’t get that with a pitch bearing. It’s a very slow moving, uh, slewing bearing. Um, so picking up.

Noise through vibration can be very difficult, uh, because again, you don’t get that frequency of that [00:03:00] rotation, so you’re left with nothing but uh, a bunch of noise. Right. And you’re hoping that that noise floor is low enough that you might capture a bit of crunching of cage material or anything like that?

Right. The alternative in what, in what we use ecoPITCH for is it’s very simple. We, we point a an inductive displacement sensor right at the pitch bearing itself. Typically the inner ring, depending on the type of turbine. And what we’re looking for is any kind of slop or displacement between the inner and outer ring.

And there’s always gonna be some, right. Uh, but, but what we’re looking for is. Is a change in the amount of, of movement between those two rings, which may indicate falling or, or other failure modes within the raceways. The challenges come along when you have failure modes that maybe, maybe don’t show themselves right through that displacement because it’s absolutely possible to, to completely lock [00:04:00] up a bearing while, while showing almost no displacement.

So there’s, there’s, there are challenges to come along with this, so, so. ecoPITCH is great for pitch bearings, but it really needs to be coupled with good visual inspections by the sites to make sure that that bearing’s not spitting out cage material right. And something that, that maybe isn’t being seen in the data.

Allen Hall: So those measurements are important.

Right? And it’s very difficult to go up there every month or two and try to take those measurements. Are there signs on the outside that everybody should be watching for? I know when we were on site a number of times. If there’s a pitch bearing problem, you typically see grease on the outside of the blade, near the root area.

Is that the, the main source of detection at the moment?

Forrest French: Yeah. And, and you know, I think, I think every operator’s gonna have a different way of looking for this stuff. It’s, it’s not there, there’s not a, uh, a very uniform strategy, I would say. Um, but really what they’re gonna be [00:05:00] looking for yeah. Is, is exactly that.

It’s gonna be grease purging out of the seals. Um, it’s gonna be the seals themselves blowing out. Right. Um, that’s, uh, cage material. Coming out of the seals is a, is obviously gonna tell you that you’ve got some, some, uh, some balls inside your bearing that are getting locked up and pulling the cage to bits, right?

And that’s what’s gonna happen when that displacement I was talking about gets severe. So you get severe displacement. It jams up a ball, but you continue to pitch. So other balls continue to move and you kind of shred that cage and it starts spitting that material out, damaging the seal. Um, so it’s, it’s a whole process.

Yeah.

Allen Hall: So if you see grease on the outside, the seal is blown. And more than likely, if you look on the ground, you’re gonna see metal shards.

Forrest French: Potentially, yeah. Depending on what kind of collars and stuff you have. Uh, but, but yeah, usually a lot of those, a lot of those shards and, and that, that metal material is gonna get captured in a lot of that grease.

Um, so really it’s just gonna turn your [00:06:00] hub into a greasy metal mess. Right. It’s, it’s still fun to be in those, those hubs. For sure. Well,

Allen Hall: let’s talk blade uh, inserts or bushings. What do you typically see if you’re walking around a farm? When a blade bushing is starting to fail, what’s the indicator from the ground?

Forrest French: From the ground? It’s difficult. Um, what, what we’ve seen typically is you’re gonna see a, uh, and, and again, this, this depends on the turbine, uh, whether it’s an electrically driven turbine or a hydraulically driven, uh, pitch bearing, sorry. Um, with the electrically driven pitch bearings, it’s a little bit easier to spot these issues.

You’ve, you’ve got. Uh, when, when the bushing starts to fail, it will basically spit out some of this, they call it dust, like a metal dust basically. And that dust will kind of make its way out onto the outside of the blade usually. So. From the Nelle, for example, you might pop your head out the hatch, do a visual inspection of the outside of the root, [00:07:00] and you might see some of that dusting heading down, down the blade.

That’s a good indicator that, that you’ve potentially got an issue. It’s, it’s not a, a, a, a sure thing at that point. Right. Um, because there’s a lot of places where metal can can make its way into the system with the hydraulically driven turbines that. Indicator gets a lot more difficult. Um, if anybody, you know, and I’m sure a lot of the folks on the call have some of these turbines, they’re a mess usually, right?

Um, if, if, if any bit of debris gets loose, it’s gonna knock off a bunch of hydraulic lines and it’s gonna make an absolute mess. And any material that’s being spit out by those bushings, it’s just gonna get. Caught up in all that hydraulic oil, and again, it’s just gonna turn into a mess and you’re not really gonna know one from the other at that point.

You’re really just left with, with uh, uh, kind of your more rudimentary ways of looking for this and some of your [00:08:00] more labor intensive ways of looking for this

Allen Hall: force. There’s a lot of ways to inspect the blade root insert. Bushing issue as the blade moves around and I, I’ve seen some of these, uh, sites where they got a technician who climbs up in there and he is got a feeler gauge of some sort.

Is that really an effective way to, to even measure that problem?

Forrest French: Yeah. The, the feeler gauge method is. Is better than nothing. Right? You’re, you’re doing something at that point. What, what we’ve found historically is that by the time you can really get a feeler gauge measurement, uh, it’s probably too late.

At that point, you, you’re seeing a significant enough gap that you can get material in there. It’s, it’s a, you’ve got a big problem on your hands. We also see paired with that, um. We see folks doing a dial indicator measurement, right? Where you’re taking sta uh, dial indicators, you’re placing them around the circumference of the blade, and that usually involves pitching the blade out, cantilever, and then you, you just rotate the blade, and that’s in that [00:09:00]static position.

You’re not actually rotating the hub. That is, is definitely better than something like a feeler gauge methodology. The, the, the, the good thing about that is you get higher resolution and you can track that over time as you use that, that methodology. The problem with both of those though, is they’re, they’re offline measurements.

I. You’re not seeing any of the loading due to the rotation of the hub, none of the arrow loads on the blades. So what you’re gonna see is if you place a continuous monitoring system, or, or even a, a, a, a portable monitoring system on this, and you rotate that turbine, you’re gonna see a significant increase in displacement value.

So you’re getting the real picture of what’s actually happening when this turbine is operating. Right? That’s gonna give you. A lot more insight into when you need to make a decision to shut this thing down.

Allen Hall: So how far off are the feeler gauge measurements compared to the ecoPITCH system?

Forrest French: It varies. Uh, it, that’s, that’s the issue with the feeler gauge is that depending on [00:10:00] which technician, on which day.

In which position, you know, how they’re feeling that day. They’ll get a different measurement every time. Um, and that’s nothing against the technicians themselves. They’re, it doesn’t matter how perfect, how perfect you do it, you’re gonna get a different measurement every time because that, that blade is shifting and moving around and it might just sit somewhere new one day when you go up to check it.

Um, but on average, I could say easily that you could see up to. A, a difference of, I mean, two, three millimeter I’ve seen before, a difference between a feeler gauge and an actual live measurement when operating the turbine. So very significant.

Allen Hall: Well, yeah. Well, what I want to talk to then is what happens if we don’t catch these, uh, these indicators early enough?

What is the downstream effect and sort of how expensive does that get

Forrest French: The final failure is, is catastrophic. Right. The final failure is that the [00:11:00] blade falls off. It, it liberates, right? That’s the, the correct term is a liberation. Um, but nobody wants to end up with a blade in on the ground. Um, and so you, you generally have a lot of signs leading up to that.

Um, that again, you, you need some type of system to measure those. Whether that’s a manual measurement, um, using feeler gauges or dial indicators, and I have my opinions on those and we will get into that. But, or, or, or a continuous monitoring system, whether that’s permanent or a portable system, uh, such as a, a sweep.

Um, but you need to be looking out for these items in some way, shape, or form. There’s, there’s a particular subset of turbines, of blade types that are, that are known to be seeing this failure more. And it’s highly likely that if you’re listening to this, you probably know whether you have those, those blades.

You’ve probably been notified one way or another. [00:12:00] Um, but if not, we can help, we can help make that call.

Martin McLarnon: Yeah. And just, just add to that, you know, there’s other, um, owners, you know, the blade liberation potentially if it strikes the tower. Could you get tower collapse as well? So that’s like obviously, uh, huge increases.

Um, and then when that happens, you know, what are the options? You know, um, you know, what damage does that do? How long does it take to get a new blade in an expedited fashion can be even more expensive. And then the whole time you’ve got, um, the turbine is offline. And depending on what time of year that happens, you may not be able to kinda get it all, all lined up, um, for several months.

Um, so, so yeah, definitely. It’s, it’s extremely, we’d say high risk. So the, the cost impacts are, are, are really big.

Joel Saxum: I’ve, I’ve heard of, uh, touching the insurance world, right? Like farms where, and this is where the ecoPITCH system comes into play.

Wind farms that have been shut down and they haven’t been turned back on for months, entire wind farms because they don’t know how to monitor for this, or they don’t know if it’s safe to go back on. Once [00:13:00] they’ve discovered a problem, they don’t know what that, um, you know, what is our safety margin here?

What. Can we play with, how can we get this thing back running? So you guys as eco with the ecoPITCH system, have walked into that, right? You’ve been able to get these things up and running. How does that work? How does that process work with you guys?

Forrest French: So, so a situation like that, and we’ve seen this, right?

Uh, customer has a blade liberate they shut down their entire fleet because to your point, they don’t know. They don’t know, right? They don’t know what’s out there. Now, what, what other insidious failures are just waiting for them. So. What we can provide in that case is, is our, our ecoPITCH system. We have a portable.

Portion or a portable version of this where we go up tower, it’s a real quick and dirty type thing, right? We’re using magnets and Velcro, whatever we can right to crudely get this stuff into the turbine safely. Obviously it’s not going anywhere, um, but whatever it takes to quickly [00:14:00] get this system installed, what we’ll do is we’ll run the turbine for about 10 minutes, right?

We’re gonna. Take our measurements, we’re gonna get outta there, we’re gonna yank our equipment out, and we’re gonna move on to the next turbine. Generally speaking, with that system, and this depends on the turbine, you’re looking at about two turbines per day. Certain certain blade types, we have to get in the blade itself.

That can push us back to, you know, one turbine per day for confined space reasons and things like that. Um, but what that does is it provides you with. Your full population. Now you know what every blade looks like compared to the rest of the population. And what we’re doing with that data is we’re, again, we’re taking all these 10 minute data samples and we’re just saying, Hey, these, this subset of turbines needs further analysis, right?

You need to be watching these. The rest of these though are baseline. They’re all right where we expect them to be. They’re all [00:15:00] the same. The operator can quickly just go and fire those turbines back up and get back to business.

Allen Hall: And what does that data look like for us? Is it just a, a measurement or? Do you see the movement of the root and the, the pitch bearing as the turbine spins?

What, what is that data?

Forrest French: The data is, is really rudimentary. It’s very, it’s very cool and, and there’s a lot of information that you can take away from it, but at the end of the day, it’s just a sine wave. And I’m sure we’ll, we’ll provide some, some examples of that that you guys can toss up on the screen.

Um, but really what you’re seeing, and generally in a simple system, we’re gonna put a sensor up near the leading edge. Near the trailing edge, right? And if you put those two, uh, sign waves on a graph, what you’ll typically see is they’re, they’re out of phase by about 90 degrees. That’s expected as the turbine is rotating.

One side, you know, one side of the blade’s gonna go into compression, one’s gonna go into detention, and then as it swings around, it’s gonna reverse, right? So you get that 90 degree phase [00:16:00] where it starts to get fun is, uh, or fun, fun for me as the engineer looking at the data. Maybe not fun for the, the person who owns a turbine, but, uh, where it starts to get interesting is when these failures get.

Very severe. We’ve seen that that phasing actually start to line up. And what that means to me is that the blade is no longer wobbling. It’s literally pulling away all at one time and dropping back down all at once, right? So you have the entire blade system plunking up and then falling back on the bearing.

So at that point, that means that likely you’ve, you’ve lost. Enough bushings around the circumference of that blade that the entire blade is moving at the same time rather than flexing in and out. That’s a little more rare, but it’s just an example of some of the cool, uh, bits of information that we can take away from this

Allen Hall: for us, when you see these kinds of large measurements, uh, displacement happening [00:17:00] as the hub spins, putting a permanent system in, I think makes sense because you want to be able to project.

Ideally where this growth is or if it starts to vary wildly uh, or grow rapidly, you wanna be able to understand how soon to shut the turbine off. Explain to me what the logic is that goes into that, because there’s a lot of engineering that looks at that data.

Forrest French: Yeah, and this is, this is the key difference between something like a portable system that we talked about where you go up, you take 10 minutes of data and you yank it out.

The key difference between that and a continuous monitoring and a permanent system. The portable system is gonna tell you on this day at this time, what was your displacement? And that’s great information. You can absolutely action that information, but what you’re lacking is the full story, right? What, okay, it was here today, what is it tomorrow?

What is it? The next day? I’ve seen examples where, uh, I’ve put a permanent system in place and the [00:18:00] displacement value is, we’ll call it elevated. It’s maybe not in like emergency status, but it’s elevated. It stayed there. For as long as we’ve monitored this turbine, it stayed. What that means is that had you just gone and done dial indicator measurements or even a portable suite, you might end up thinking, we need to, we need to action this.

We need to replace this blade. However, with a permanent system, you’re now armed with that knowledge to say, no, let’s monitor. Let’s keep watching it and wait until it does actually grow. And that’s the full picture, right? If I go and put a system in place, and I’m seeing that gross pattern, and, and Martin used the term peak to peak earlier, and what that’s referring to is that sine wave that we’re talking about.

The distance that the target is moving away from the sensor, the top minus the bottom of that waveform, gives you your full displacement, your peak to peak, as that peak to peak grows. What we generally see is a, an an [00:19:00]exponential growth. Once it starts to go, once you get a, a significant number of these bushings that start to fail, the rest of the bushings that are already prone to failure continue to fail, and then you have a cascading effect where you just start to release.

Um, so being able to watch for that and being able to make a risk-based decision with that data. Is crucial.

Joel Saxum: So for, with that being said, when an, when you guys are dealing with an operator, do you have a set metric or is it case by case? When you know like, hey, this thing is starting to unzip itself. What does that look like?

What’s the time look like? Do they have an hour? Do they have a month? What does, what are they thinking?

Forrest French: The timing can change depending on the, the type of blade, the environment right. That it’s in, how it was installed. Um. How many, how many blade bolts have broken over time, right? That, that time can change significantly.

On average, I would say that we go [00:20:00] from making a call to notify a customer that you have an issue that is starting to reveal itself to, we probably need to consider shutting this thing down is usually on the order of two months, on average, probably. Um, so. Not, we’re not talking days. Right. It, it, it can be though.

Allen Hall: Maybe give us a picture of what the system looks like when it’s installed in, at the base of Blade or in the hub.

Well,

Forrest French: I’ll, I’ll, I’ll, I’ll start with the root insert. Um, it’s the one that’s a little more interesting as far as the installation goes, but. Typically what we’re gonna have is we’re gonna have our CMS boxes, right? There’s two of them. Um, they’re about, yeah, I mean about a foot, foot by foot, maybe. Um, you’ve got two of those guys depending on the turbine.

And this is the fun of my job as, as the ecoPITCH application lead. Every turbine I get to go up and make a custom installation design, right? We have to find somewhere to put these boxes, and, and we’ve talked about it. These, these turbines, these hubs [00:21:00] are not designed to be, uh, retrofit friendly, right?

There’s nowhere to put this stuff. They don’t, they don’t leave bolt holes for you to put things. So we have to get really creative in order to design a robust system that’s gonna survive in this environment. But I digress. Generally you’re gonna have your two CMS boxes mounted somewhere in the hub, um, on a, a mounting plate of some kind.

Uh, and then from there, at most you’re gonna have about nine displacement sensors. So three sensors in each blade. Those sensors are wired. Uh, so what, we’ll, what we’ll typically do is I’ll have, uh, for example, a, an anchor of some kind. Dead center or in the center of rotation inside the blade itself. And I’ll typically have a, a.

Some kind of, uh, I’ve used very fancy, uh, uh, industry grade bungee cable, basically. Uh, or, or [00:22:00] similar, uh, metal, cable, whatever it may be. Um, it’s something with some stretch and some give because we have a rotating component, but the cables will then drop down onto that anchor. They’ll come up that, that fancy bungee cord right from there.

They’ll be routed along existing cable lines to the boxes themselves. Um, the sensors are mounted. It’s a pretty simple thing. The sensors are mounted using a combination typically of a, of a, of a double-sided tape and a liquid epoxy. The double-sided tape is there for installation efficiency, uh, because it’s very difficult to install a liquid epoxy overhead.

But we’ve never had any, any, any, any issues with that design so far.

Joel Saxum: And I’m gonna throw one more at you here because this is something that Alan and I run into almost everywhere. We, we end up when we’re talking I, iot or anything else. Cybersecurity. Right? Because at the end of the day, this is the conversation we have.

Oh, you can solve a problem. Great. I’m gonna pass it. Oh wait, cybersecurity. We gotta make sure this is, [00:23:00] that we can get these things actually installed in our turbine. So how does, uh, ONYX Insight handle that with this system?

Forrest French: Sure. So I, I think a couple key things, right. First and foremost, I think a lot of people jump for joy when we tell them that our system is run off of a 4G router.

It does not connect to the turbine operating, so it does not connect to the turbine at all. Right. It runs fully on its own. Um, there are, you know, there are still, those questions absolutely come up still. Right. Even though it’s, it’s just taking data from our system. It’s not getting any kind of operating data from the turbine itself.

We still get that question right, and I think it’s perfectly fair. However, um, we’ve had multiple success stories up to this point, right? We’ve, we’ve, we’ve, uh, we’ve been able to work through those. We have a dedicated IT team. We’re up to date on cybersecurity, uh, certifications and those items. I’m not an IT guy, but we have a whole IT group that takes care of this, right?

So when those [00:24:00] concerns do come up. We’re locked and loaded. We’re ready to get them chatting with the people who they need to chat to, to make sure that whatever cybersecurity questionnaires or, uh, you know, confirmations need to be done, it can be done and it, and it does get done. So that, that’s, that’s, I think, I think the best news is just, it’s, it’s fully standalone, right?

There’s no ethernet connection to the tower itself.

Allen Hall: All right, so that sounds really simple and easy to do, and you can do it in a temporary fashion and get yourself some data across the whole fleet. Or if in some cases when you triage these, you’ll want to keep the system in there longer term to help you understand when repairs need to take place.

And this is where the money comes in because it’s all at the end of the day, is about using your resources wisely as an operations. And your o and m budget is limited and is. Tends to get limited more and more every year. So you want to be spending the money wisely, which is what ecoPITCH System does.

How does, how do you project then, when you have that data [00:25:00] and you’re starting to get that streaming coming in, you’re seeing the, the blade movement play out. How are you spending your budgets there? How do you appropriate the right amount of funds for the right size of problem?

Martin McLarnon: Yeah, so we’ve got, um, um, a good case study with a customer who had installed ecoPitch permanent, uh, for insert issue. And they had quite a lot of historical issues with this, um, and, and really trying to manage this, this problem. Um, and like how do they keep operating the turbine, uh, wind farm safely while, while these, uh, issues are ongoing? So really legal pitch was really unique and enable enabling them to do that.

They get this peak to peak measurement that, that we’re measuring, you know, all the time. And seeing how that, um, changes over time. So gives ’em the benefit of an early stage indicator. And as far said, it’s a, it’s a direct measurement and it’s, um, you know, through the actual operation of the, the turbine rotation.

Like some of these other, you know, [00:26:00] one off measurements are very, you know, it’s whenever the, the, the blades are static, it doesn’t show that true, um, garbing throughout the whole rotation. So. Um, that we were able to see that whole progress from really early stage. So things that we talked about, getting a new blade or looking at some engineering, uh, solutions, gives them time to plan that out, but also in the right way so they can wait until it gets to a point, um, where they’re, um, you know, saying that this needs to be switched off.

We’re not comfortable anymore with the level of the gabbing. Um, and even to that point when even the, the blade itself is, is switched off, turbine, switched off, there could be still a chance of slippage and the blade continuing to, to fall off. They need to know that as well, for safety reasons. So until that blade gets replaced or repaired, they need to have really good visibility on, on what that condition is.

But effectively, you know, across a large wind farm, it really helps them manage things rather than, uh, you know, switching everything off when just, you know, [00:27:00] until they replace all the blades, which isn’t really. Realistically an option anyway. So they have to really help some manage that. Loose budgets, excuse me.

And uh, yeah, supply chain, um, lead times, things like that. You have, that all has to be managed. Um. So it’s been a really good success story.

Allen Hall: And all this is backed by all the engineers and scientists that are at ONYX Insight.

And Martin, maybe you can provide a little summary of that because if you haven’t worked with ONYX Insight, you may not realize the power and the capability that exists within in that building.

Martin McLarnon: Yeah, yeah. And it’s great, you know, here in Forest talk through the, uh. The application for, for ecoPITCH. So, you know, obviously, you know, we’ve got a really talented bunch of engineers that can, you know, really explain, uh, the issues and under, you know, we really are understanding, um, the problems customers have, which is unique, uh, depending on the turbine type, um, or, or the specific issue.

And, and that’s really how, you know, ONYX is, um, business has really grown over the [00:28:00] years. Is that continuous, um, collaboration with customers. What sorts of issues are coming up like for said. This root insert issue has just kind of emerged in the last couple of years. It wasn’t something people were, uh, necessarily expecting.

And, um, we were always trying to drive to have those, those discussions. So for us, we, um, you know, background is in, uh, a lot of me, mechanical engineering and gearbox design was our original, uh, how we started out. But then getting into drive, train, uh, monitoring, vibration monitoring, CMS hardware, um, um, with, you know.

Principal engineers with decades of experience, like, you know, global team, uh, different data analysts as well. So we, um, yeah, really have expanded that from drive chain, uh, skid analytics, um, foundation monitoring, uh, pitch bearing, um, and, uh, and this route insert blade monitoring as well. So, um, yeah, we really, whenever customers have have those issues, we like to [00:29:00]discuss it, figure out what, what the potential solutions are, and.

Uh, it could be a new, a new product for us. Um. E eventually, if that’s, if that’s something we can, uh, kinda get a good solution for or release. Provide advice to the customer.

Allen Hall: Yeah. If you have blade root insert issues or pitch bearing issues, you do not wanna mess with them. Or even blade bolts because blade liberation is so expensive.

And when you have those issues, you want to go to accompany. Like ONYX Insight because they have the expertise. They’ve been around a long time. They’re a part of some OEMs equipment and they understand the variations between all those different blade models and turbine types. That’s where you wanna start because you’re gonna save your company.

I. Millions of dollars in losses in downtime. And Martin, how do people who are not familiar with On Insight get ahold of you and talk about ecoPITCH to see how they can get it installed in their turbines?

Martin McLarnon: Yeah, I, um, we confirm my, uh, email address in the chat. Um, I’m a [00:30:00] cover the North American region, so hobby to, um, you know, get, get involved in that discussion.

And we’ve got global, uh, commercial folks, so I will get. Get the, you connected to them and I’d love to have a conversation.

Allen Hall: And you can always visit ONYX Insight ONYXinsight.com. Great website, and you can learn more about ecoPITCH on that site. There’s a good PDF download there if you wanna learn more.

And yes, reach out to ONYX Insight. Reach out to to Martin, reach out to, for. Get your questions answered now, because as the season progresses, it’s only gonna be more expensive and at the right time to do this kind of inspection and data acquisition is now so. Martin and Forrest, thank you so much for appearing on the show.

I really appreciate all of the information. Absolutely.

Forrest French: Thanks

Allen Hall: for having us.

Martin McLarnon: Thanks Al Joel. Appreciate [00:31:00] it.

https://weatherguardwind.com/onyx-insight-ecopitch-blade-root/

Continue Reading

Renewable Energy

A Guide for Solar & Battery Storage for Commercial Properties

Published

on

If you own or manage a commercial property in Australia right now, energy costs are probably already giving you a headache.

Power prices jump around, demand charges can be high, and tenants are asking tougher questions about sustainability and operating costs.

That’s why solar paired with battery storage has moved far beyond a nice idea. For most of the Australian businesses, it’s now a practical, commercial decision.

Wandering what’s more?

Well, in businesses, solar and batteries aren’t just about cutting emissions; they also protect cash flow, improve property value, and give businesses greater control in an ever-changing energy system.

So, now let’s walk through how it all works, what incentives are available, and why more Australian businesses are making the move now in 2026!

Why Solar & Batteries Matter for Australian Commercial Properties?

Commercial energy use is big and often expensive. Every day, offices, retail stores, manufacturing facilities, and warehouses consume large amounts of electricity during daylight and after dark.

Traditionally, businesses pay peak rates for grid energy during working hours, and then again for nighttime power. That’s where solar plus storage flips the script:

Solar Panels: Cutting Your Daytime Costs

Solar PV systems convert sunlight into electricity. In Australia’s abundant sun-rich climate, rooftop solar is a no-brainer:

  • Australia has among the highest rooftop solar penetration in the world, and commercial rooftops have huge capacity for panels.
  • Solar reduces dependency on the grid during peak rates, ensuring immediate savings on energy bills.

Battery Storage: Power After the Sun Goes Down!

Solar alone is great, but what if your business still needs power at night? So here comes the power of battery storage.

Batteries store surplus solar power generated throughout the day and discharge it when you need it most, such as during evening peak times or during grid outages.

For many commercial setups, having battery storage means:

  • Lower peak demand charges.
  • Backup power resilience during blackouts.
  • More control over energy usage patterns.

Solar panels combined with solar storage can transform a commercial property from a passive energy consumer into an active energy optimiser.

Government Rebates & Incentives for Solar: 2026 Updates!

In Australia, government rebates and
incentives
in 2026 are strengthening the business case for commercial solar and battery systems.

The federal government has dramatically expanded support, making it a particularly compelling time for businesses to
act.

1. Renewable Energy Rebates Under Small-Scale Technology Certificates

Both solar panels and battery storage systems qualify for Small-scale
Technology Certificates
(STCs). These certificates are tradable, that translate into a direct upfront
discount on installation costs:

  • Batteries earn STCs based on their usable capacity, and these are typically applied as an instant point-of-sale
    discount via your installer.
  • Solar PV systems also attract STCs, which substantially reduce the net price.

2. Cheaper Home Batteries Program Extended to Businesses

Since 1 July 2025, the federal Cheaper Home Batteries Program has been
offering significant battery rebates and, importantly, businesses can access benefits too.

Key points:

  • Eligible batteries installed alongside solar PV systems receive STC-based rebates.
  • For 2026:
  • Batteries installed before 1 May 2026 have a higher STC factor (a higher rebate per kWh).

    From 1 May 2026, the rebate is tiered by battery size, with higher support for the first 14kWh and gradually less
    for
    larger capacities.

  • The program runs until 2030, but rebate amounts decrease each year. This means the earlier you install, the more
    you benefit.

The federal rebate is available to commercial
properties
as long as the system meets eligibility requirements.

3. State-Based Rebates & Incentives

State-level
incentives can stack
on top of federal support, giving commercial properties even more value:

  • NSW Peak Demand Reduction Scheme (PDRS) offers additional battery rebates and VPP connection bonus payments.
  • Victoria’s Business Renewables Fund and other local programs support larger solar and storage projects.
  • Queensland offers interest-free loans and targeted incentives.
  • South Australia’s Home Battery Scheme provides rebates for battery installations tied to smart energy networks.

However, these vary greatly by region, so businesses should talk with accredited installers and local energy agencies
to understand stacking opportunities.

4. Tax & Depreciation Benefits

Beyond rebates, commercial solar and storage investments can be tax-effective:

  • Immediate or accelerated depreciation on assets (subject to ATO rules) can produce valuable upfront tax
    deductions.
  • Solar + battery systems are treated as capital assets, which can accelerate the return on investment.

How to Choose the Right Solar & Battery System for Your Commercial Property?

Choosing the
right system
isn’t one-size-fits-all. Here’s a step-by-step guide for sizing and designing what you need.

Step 1: Energy Audit

Start with a detailed energy audit to understand daily and seasonal load patterns. This informs:

  • How much solar capacity do you need
  • What battery size makes sense for backup power

For instance, if you have a warehouse with high daytime loads, you might prioritise solar capacity. For an office
that uses power after hours, a larger battery makes more sense.

Step 2: Solar Panel Selection

Commercial systems range from tens to hundreds of kilowatts (kW). System options:

  • 20–100 kW rooftop systems for small-medium businesses
  • 100 kW and beyond for large facilities or multi-site portfolios

Larger arrays often qualify for LGCs (Large-scale Generation Certificates) if they exceed the STC threshold, which is
another way to reduce costs.

Step 3: Battery Sizing

Battery capacity is measured in kilowatt-hours (kWh). So, ask yourself:

  • Do you want to reduce peak demand charges?
  • Do you want emergency backup?
  • How many hours of stored power do you need?

A battery that is about 20–50% of peak demand can deliver strong savings, but your energy audit will help refine this
estimate.

Smart Management & VPP Integration

Did you know that nowadays most modern batteries are VPP-capable? This means they can join the Virtual Power Plant
network

This connection allows aggregated batteries to transmit stored energy into the grid at peak times for added value,
often with payments from network operators or utilities.

Also look for:

  • Energy management software to optimise usage.
  • Time-of-use tariff compatibility to shift power consumption into cheaper periods.

Commercial Solar in 2026: What the Financial Returns Look Like

Undoubtedly, commercial solar with battery storage isn’t just a green, sustainable solution; it’s financially savvy.

How? Let’s find out!

Reduced Energy Bills

Solar power offsets expensive grid power during daylight. Add batteries, and you reduce:

  • Peak demand charges
  • Night-time grid consumption

Savings vary by site, but on average, many businesses report reductions of 20–50% or more in annual energy spend.

Rebate Impact

Solar STCs can knock thousands off upfront costs. Battery rebates, especially in early 2026, are significant.

An 10kWh commercial battery could attract several thousand dollars in rebate support alone.

Payback Period

For many commercial setups, payback periods of 3 to 7 years are achievable, and tax benefits can further improve them.

In Australia, major tenants also value energy-independent buildings, supporting higher rental premiums.

Solar Panel Policies & Market Trends| What to Watch!

Honestly, understanding government policies and trends in the Australian energy market isn’t everyone’s cup of tea. It takes proper time and research to find your exact match.

So, here are key trends and cautions you should take into account while planning to install solar and battery storage in your property:

Rebate Step-Downs

Rebate values decrease every year through to 2030. Therefore, later installs receive less government support than earlier ones. So, timing matters; act fast.

Feed-In Tariffs Are Evolving

In Australia, state feed-in tariffs for exported solar vary widely and are under review.

In some states, such as Victoria, midday solar export credits have been proposed to drop sharply, making batteries for storing and using your own power even more valuable.

Installer Accreditation

To claim rebates, systems must be installed by accredited professionals and use certified equipment. This ensures compliance and warranty security.

Future Growth Forecast for Commercial Solar in 2030: What’s Next!

Australia’s energy landscape is changing fast. More renewables are coming onto the grid, batteries are becoming essential for keeping the system stable, and policymakers and market operators are rolling out new ways for distributed energy resources (DERs) to create value.

Therefore, solar paired with batteries is no longer just about generating power; it’s increasingly seen as a flexible asset that can support the grid when it’s needed most.

At the same time, commercial microgrids are gaining traction, with groups of buildings sharing solar and storage to boost reliability, cut energy costs, and better manage peak demand.

Taken together, these shifts are making commercial solar more valuable than ever, cementing its role as a key part of Australia’s move toward a smarter, more decentralised, and low-carbon energy system by 2030.

Final Thought | Why 2026 Is the Year to Act?

If you’re a commercial property owner, don’t worry much! In Australia in 2026, solar and battery storage isn’t just a sustainability project; it’s a strategic investment.

Also, with current government rebates, state incentives, and tax benefits, you can dramatically lower upfront costs while future-proofing your energy usage.

Plus, as grid export tariffs evolve and demand charges climb, the economics of self-generated and self-stored power only get stronger.

This is the moment when smart businesses make the leap not just to cut costs, but to take control of their energy future.

Wanna join this energy revolution? Contact Cyanergy, your most trusted partner, and win a free solar quote today!

Your Solution Is Just a Click Away

The post A Guide for Solar & Battery Storage for Commercial Properties appeared first on Cyanergy.

A Guide for Solar & Battery Storage for Commercial Properties

Continue Reading

Renewable Energy

Morten Handberg Breaks Down Leading Edge Erosion

Published

on

Weather Guard Lightning Tech

Morten Handberg Breaks Down Leading Edge Erosion

Morten Handberg, Uptime’s blade whisperer, returns to the show to tackle leading edge erosion. He covers the fatigue physics behind rain erosion, why OEMs offer no warranty coverage for it, how operators should time repairs before costs multiply, and what LEP solutions are working in the field.

Sign up now for Uptime Tech News, our weekly newsletter on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on YouTubeLinkedin and visit Weather Guard on the web. And subscribe to Rosemary’s “Engineering with Rosie” YouTube channel here. Have a question we can answer on the show? Email us!

Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the Progress Powering Tomorrow.

Allen Hall: Morten, welcome back to the program.

Morten Handberg: Thanks, Allen. It’s fantastic to be back on on, on the podcast. Really excited to, uh, record an episode on Erosion Today.

Allen Hall: Wow. Leading as erosion is such a huge worldwide issue and. Operators are having big problems with it right now. It does seem like there’s not a lot of information readily available to operators to understand the issue quite yet.

Morten Handberg: Well, it, I mean, it’s something that we’ve been looking at for the, at least the past 10 years. We started looking at it when I was in in DONG or as it back in 2014. But we also saw it very early on because we were in offshore environment, much harsher. Uh, rain erosion conditions, and you were also starting to change the way that the, the, uh, the coatings [00:01:00]that were applied.

So there was sort of a, there was several things at play that meant that we saw very early on, early on offshore.

Allen Hall: Well, let’s get to the basics of rain erosion and leading edge erosion. What is the physics behind it? What, what happens to the leading edges of these blades as rain? Impacts them.

Morten Handberg: Well, you should see it as um, millions of, of small fat, uh, small fatigue loads on the coating because each raindrop, it creates a small impact load on the blade.

It creates a rail wave that sort of creates a. Uh, share, share loads out on, uh, into the coating that is then absorbed by the coating, by the filler and and so on. And the more absorbent that your substrate is, the longer survivability you, you’re leading into coating will have, uh, if you have manufacturing defects in the coating, that will accelerate the erosion.

But it is a fatigue effect that is then accelerated or decelerate depending on, uh, local blade conditions.

Allen Hall: Yeah, what I’ve seen in the [00:02:00] field is the blades look great. Nothing. Nothing. You don’t see anything happening and then all of a sudden it’s like instantaneous, like a fatigue failure.

Morten Handberg: I mean, a lot of things is going on.

Uh, actually you start out by, uh, by having it’s, they call, it’s called mass loss and it’s actually where the erosion is starting to change the material characteristics of the coating. And that is just the first step. So you don’t see that. You can measure it in a, um, in the laboratory setting, you can actually see that there is a changing in, in the coating condition.

You just can’t see it yet. Then you start to get pitting, and that is these very, very, very small, almost microscopic chippings of the coating. They will then accelerate and then you start to actually see the first sign, which is like a slight, a braided surface. It’s like someone took a, a fine grain sandpaper across the surface of the plate, but you only see it on the leading edge.

If it’s erosion, it’s only on the center of the leading edge. That’s very important. If you see it on the sides and further down, then it’s, it’s [00:03:00] something else. Uh, it’s not pure erosion, but then you see this fine grain. Then as that progresses, you see more and more and more chipping, more and more degradation across the, the leading edge of the blade.

Worse in the tip of it, less so into the inner third of the blade, but it is a gradual process that you see over the leading edge. Finally, you’ll then start to see the, uh, the coating coming off and you’ll start to see exposed laminate. Um, and from there it can, it can accelerate or exposed filler or laminate.

From there, it can accelerate because. Neither of those are actually designed to handle any kind of erosion.

Allen Hall: What are the critical variables in relation to leading edge erosion? Which variables seem to matter most? Is it raindrop size? Is it tip speed? What factors should we be looking for?

Morten Handberg: Tip speeds and rain intensity.

Uh, obviously droplet size have an impact, but. But what is an operator you can actually see and monitor for is, well, you know, your tip speed of the blade that matters. Uh, but it is really the rain intensity. So if you have [00:04:00] sort of a, an average drizzle over the year, that’s a much better condition than if you have like, you know, showers in, in, in, in a, in a few hour sessions at certain points of time.

Because then, then it becomes an aggressive erosion. It’s not, it’s, you don’t, you get much higher up on the. On the, on the fatigue curve, uh, then if it’s just an average baseline load over long periods of time,

Allen Hall: yeah, that fatigue curve really does matter. And today we’re looking at what generally is called VN curves, velocity versus number of impacts, and.

The rain erosion facilities I’ve seen, I’ve been able to, to give some parameters to, uh, provide a baseline or a comparison between different kinds of coatings. Is is that the, the standard as everybody sees it today, the sort of the VN curve

Morten Handberg: that is what’s been developed by this scientific, uh, community, these VN curve, that that gives you some level of measure.

I would still say, you know, from what we can do in a rain erosion tester to what is then actually going on [00:05:00] the field is still very two very, very, very different things you can say. If you can survive a thousand hours in a rain erosion tester, then it’s the similar in the field that doesn’t really work like that.

But there are comparisons so you can do, you know, uh, a relationship study, uh, between them. And you can use the VN curves to determine the ERO erosion aggressiveness. Field. We did that in the bait defect forecasting that we did in wind pile up with DCU back in 2019, uh, where we actually looked at rain erosion across Europe.

Uh, and then the, uh, the actual erosion propagation that we saw within these different sites, both for offshore and for onshore, where we actually mapped out, um, across Europe, you know, which areas will be the most erosion prone. And then utilize that to, to then mo then, then to determine what would be the red, the best maintenance strategy and also, uh, erosion, uh, LEP, uh, solution for that wind farm.

Allen Hall: Oh, okay. Uh, is it raindrop size then, or just [00:06:00] quantity of raindrops? Obviously drizzle has smaller impact. There’s less mass there, but larger raindrops, more frequent rain.

Morten Handberg: If you have showers, it tends to be larger drops. Right. So, so they kind of follow each other. And if it’s more of a drizzle. It will be smaller raindrops.

They typically follow each other. You know, if you’ve been outside in a rainstorm before we just showered, you would have sense that these are, these are much higher, you know, raindrop sizes. So, so there is typically an a relation between raindrop size and then showers versus a drizzle. It’s typically more fine, fine grain rain drops.

Allen Hall: And what impact does dirt and debris mixed in with the rain, uh, affect leading edge erosion? I know a lot of, there’s a lot of concern. And farm fields and places where there’s a lot of plowing and turnover of the dirt that it, it, it does seem like there’s more leading edge erosion and I, I think there’s a little bit of an unknown about it, uh, just because they see leading edge [00:07:00]erosion close to these areas where there’s a lot of tilling going on.

Is it just dirt impact worth a blade or is it a combination of dirt plus rain and, and those two come combining together to make a worse case. Uh, damage scenario.

Morten Handberg: Technically it would be slightly worse than if it were, if there is some soil or, or sand, or sand contamination in the raindrops. But I mean, logically rain typically, you know, comes down from the sky.

It doesn’t, you know, it doesn’t mix in with the dirt then, you know, it would be more if you have dirt on the blades. It’s typically during a dry season where it would get mixed up and then blown onto the blades. Honestly, I don’t think that that is really what’s having an impact, because having contamination in the blade is not something that is, that would drive erosion.

I think that that is, I think that is, that is a misunderstanding. We do see sand, sand erosion in some part of the world where you have massive, uh, sand, uh, how do you say, sandstorms [00:08:00] coming through and, and that actually creates an, an abrasive wear on the plate. It looks different from rain erosion because it’s two different mechanisms.

Uh, where the sand is actually like a sandpaper just blowing across the surface, so you can see that. Whereas rain is more of this fatigue effect. So I think in the, theoretically if you had soil mixed in with rain, yes that could have an impact because you would have an a, a hardened particle. But I do, I don’t think it’s what’s driving erosion, to be honest.

Allen Hall: Okay, so then there’s really two different kinds of failure modes. A particle erosion, which is more of an abrasive erosion, which I would assume be a maybe a little wider, spread along the leading edge of the blade versus a fatigue impact from a raindrop collision. They just look different, right?

Morten Handberg: Yeah, so, so sand erosion you could have spreading across a larger surface of the blade because it, because it doesn’t bounce off in the same way that a raindrop would, you know, because that’s more of an impact angle and the load that it’s applying.

So if it comes in at a, at a st [00:09:00] at a, um, at the, at the, at a, at a steep angle, then it would just bounce off because the amount of load that it’s impacting on would be very limited. So that’s also why we don’t really see it on the, um, uh, outside of the leading edge. Whereas sand erosion would have a, would, would have a different effect because even at a steep angle, it would still, you know, create some kind of wear because of the hardened particle and the effect of that.

Allen Hall: Okay. So let’s talk about incubation period, because I’ve seen a lot of literature. Talking about incubation period and, and what that means. What does incubation period mean on a leading edge coating?

Morten Handberg: So that is, that, that is from when you start having the first impacts until you get the, the, the change in structure.

So when you get to the mass loss or first pitting, that would be your incubation period, because that is from when it starts until you can see the actual effects. Would say that, that that is what would be defined as the incubation period of leading into erosion.

Allen Hall: Okay. So you wanna then maximize the incubation period where the coating still looks mostly pristine [00:10:00] once incubation period is over and you get into the coating.

Are there different rates at which the coatings will deteriorate, or are they all pretty much deteriorating at roughly the same rate?

Morten Handberg: I mean, for the really high durability. We don’t really have good enough data to say anything about whether the, um, the, the period after the incubation period, whether that would actually, how that would work in the field.

We don’t really know that yet. I would say, because the, um, some of the, the shell solutions, some of the high end polyurethane coatings, if they fail, typically it’s because of workmanship. Or adhesion issues. It’s has so far not really been tied in directly in, into leading edge erosion. Uh, the ones that I’ve seen, so typically, and, and, you know, all of these high-end coatings, they’re just, they, they have shown, you know, some of them you couldn’t even wear down in a rain erosion tester.

Um, so, so we don’t really know. Um, how, [00:11:00] how the, how the shells, they would, they, they, they, they, how they would react over the five, 10 year period because we haven’t seen that much yet. And what we have seen have been more of a mechanical failure in, in the bonding

Allen Hall: that, I guess that makes sense. Then operators are still buying wind turbine blades without any leading edge coating at all.

It is basically a painted piece of fiberglass structure. Is that still advisable today or are there places where you could just get away with that? Or is that just not reality because of the tip speeds?

Morten Handberg: For the larger, I would say anything beyond two megawatt turbines, you should have leading edge protection because you’re at tip speeds where, you know, any kind of rain would create erosion within, um, within the lifetime of the late.

That is just a fact. Um, so. I don’t, I don’t see any real areas of the world where that would not apply. And if it, if you are in a place where it’s really dry, then it would typically also mean that then you would have sand erosion. Is that, that, [00:12:00] that would, I would expect that it would be one of the two.

You wouldn’t be in an area where it couldn’t get any kind of erosion to the blades. Um, so either you should have either a very tough gel code, um, coating, or you should have have an LEP per urethane based coating. On the blades,

Allen Hall: well do the manufacturers provide data on the leading edge offerings, on the coatings, or even the harder plastic shells or shields.

Does, is there any information? If I’m an operator and I’m buying a a three megawatt turbine that comes along with the blade that says, this is the li, this is the estimated lifetime, is that a thing right now? Or is it just We’re putting on a coating and we are hoping for the best?

Morten Handberg: The OEMs, as far as I, I haven’t seen any.

Any contract or agreement where today, where erosion is not considered a wear and tear issue, there is simply no, no coverage for it. So if you buy a turbine and there’s any kind of leading [00:13:00] edge erosion outside of the end of warranty period, it’s your your problem. There is no guarantee on that.

Allen Hall: So the operator is at risk,

Morten Handberg: well, they’re at risk and if they don’t take matters into their own hands and make decisions on their own.

But they would still be locked in because within the warranty period, they will still be tied to the OEM and the decisions that they make. And if they have a service agreement with the OEM, then they would also be tied in with what the OEM provides.

Allen Hall: So that does place a lot of the burden on the owner operator to understand the effects of rate erosion, particularly at the at a new site if they don’t have any history on it at all.

To then try to identify a, a coating or some sort of protecting device to prevent leading edge erosion. ’cause at the end of the day, it does sound like the operator owner is gonna be responsible for fixing it and keeping the blades, uh, in some aerodynamic shape. That that’s, that’s a big hurdle for a lot of operators.

Morten Handberg: The problem is that if you have a service [00:14:00]contract, but you are depending on the OEM, providing that service. Then you have to be really certain that any leading edge erosion or anywhere on the leading edge is then covered by that contract. Otherwise, you’re in, you’re in a really bad, you’re in a really risky situation because you can’t do anything on your own.

Because if you’re a service contract, but you’re beholden to whatever the, your service provider is, is, is agreeing to providing to you. So you might not get the best service.

Allen Hall: And what are the risks of this? Uh, obviously there can be some structural issues. Particularly around the tips of the blaze, but that’s also power loss.

What are typical power loss numbers?

Morten Handberg: Well, there is a theoretically theoretical power loss to it, but for any modern turbine, the blade, the, the turbine would simply regulate itself out of any leading erosion loss. So, so the blades would just change their behavior that the turbine would just change, its its operation [00:15:00]conditions so that it would achieve the same lift to the blade.

So. Uh, any study that we have done or been a part of, uh, even, you know, comparing blades that were repaired, blades that were cleaned, blades that were, uh, left eroded, and then operating the, uh, the deviation was within half, half percent and that was within the margin of error. We couldn’t read, we couldn’t see it even for really, you know, really er road blades.

Of course there is different between turbines. Some turbines, they, they could show it, but I haven’t seen any data that suggests that erosion actually leads to a lot of power loss. There is a theoretical loss because there is a loss in aerodynamic performance, but because blades today they’re pitch controlled, then you can, you can regulate yourself out of that.

Some of that, uh, power laws,

Allen Hall: so the control laws in the turbine. Would know what the wind speeds are and what their power output should be, and it’ll adjust the [00:16:00]pitch of each of the blades sort of independently to, to drive the power output.

Morten Handberg: Typically, erosion is a uniform issue, so what happens on one blade happens on three.

So it’s rare to see that one blade is just completely erod in the two other they look fine. That’s really rare unless you start, you know, doing uh, abnormal repairs on them. Then you might get something. But even then, I mean, we’re not talking, you know, 10 per 10 degrees in, in variation. You know, it’s not, it’s not anything like that.

It’s very small changes. And if they would do a lot of weird DA, you know, uh, different angles, you would get instant imbalance and then, you know, you would get scatter alarm. So, so you would see that quite fast.

Allen Hall: Well, let me, let me just understand this just a little bit. So what the control logs would do would increase the pitch angle of the blaze, be a little more aggressive.

On power production to bring the power production up. If leading edge erosion was knocking it down a percentage point or two, does that have a consequence? Are like when you [00:17:00] start pitching the blades at slightly different angles, does that increase the area where rain erosion will occur? Is like, are you just.

Keep chasing this dragon by doing that,

Morten Handberg: you could change the area a little bit, but it’s not, it’s not something that, that changes the erosion, uh, that the erosion zone, that that much. It’s very minimal. Um, and one, one of the, another, another reason why, why you might see it might, might not see it as much is because voltage generator panels is widely used in the industry today.

And, and Vortex panel, they are. Uh, negating some of the negative effect from, uh, leading erosion. So that also adds to the effect that there, that the aerodynamic effect of leading erosion is limited, uh, compared to what we’ve seen in the past.

Allen Hall: Okay. So there’s a couple manufacturers that do use vortex generators around the tip, around the leading edge erosion areas right outta the factory, and then there’s other OEMs that don’t do that at all.

Is, is there a benefit to [00:18:00] having the VGs. Right out of the factory. Is that, is that just to, uh, as you think about the power output of the generator over time, like, this is gonna gimme a longer time before I have to do anything. Is, is in terms of repair,

Morten Handberg: it does help you if you have contamination of the blade.

It does help you if you have surface defects off the blade. That, that any, uh, any change to the air, to the aerodynamics is, is reduced and that’s really important if you have an optimized blade. Then the negative effect of leading erosion might get, uh, you know, might, might, might get, might get affected.

But there are, there are still reasons why I do want to do leading erosion repairs. You should do that anyway, even if you can’t see it on your power curve or not, because if you wait too long, you’ll start to get structural damages to the blade. As we talked about last time. It’s not that leading edge erosion will turn into a critical damage right away, but if you need, if you go into structural erosion, then the, then the cost of damage.

The cost of repairing the damage will multiply. Uh, [00:19:00] and at, at a certain point, you know, you will get a re structure. It might not make the blade, you know, uh, cost a, a condition where the blade could collapse or you’re at risk, but you do get a weakened blade that is then susceptible to damage from other sources.

Like if you have a lighting strike damage or you have a heavy storm or something like that, then that can accelerate the damage, turning it into a critical damage. So you should still keep your leading edge in, in shape. If you want to do to, to minimize your cost, you should still repair it before it becomes structural.

Allen Hall: Okay. So the blades I have seen where they actually have holes in the leading edge, that’s a big problem just because of contamination and water ingress and yeah, lightning obviously be another one. So that should be repaired immediately. Is is that the, do we treat it like a cat four or cat five when that happens?

Or how, what? How are we thinking about that?

Morten Handberg: Maximum cat, cat four, even, even in those circumstances because it is a, it is a severe issue, but it’s not critical on, on its own. So I would not treat it as a cat five where you need to stop [00:20:00] the turbine, stuff like that. Of course, you do want, you don’t want to say, okay, let’s wait on, let’s wait for a year or so before we repair it.

You know, do plan, you know, with some urgency to get it fixed, but it’s not something where you need to, you know, stubble works and then get that done. You know, the blade can survive it for, for a period of time, but you’re just. Susceptible to other risks, I would say.

Allen Hall: Alright. So in in today’s world, there’s a lot of options, uh, to select from in terms of leading edge protection.

What are some of the leading candidates? What, what are some of the things that are actually working out in the field?

Morten Handberg: What we typically do, uh, when we’re looking at leading edge erosion, we’re looking at the, the raw data from the wind farm. Seeing how, how bad is it and how long have the wind farm been operated without being repaired?

So we get a sense of the aggressiveness of the erosion and. Um, if we have reliable weather data, we can also do some modeling to see, okay, what is the, what is the, the, uh, environmental conditions? Also, just to get a sense, is this [00:21:00] material driven fatigue or is it actually rain erosion driven fatigue?

Because if the, if the coating quality was not, was not very good, if the former lead leading edge, it was not applied very, very, very good, then, you know, you still get erosion really fast. You get surface defects that, uh, that trigger erosion. So that’s very important to, to, to have a look at. But then when we’ve established that, then we look at, okay, where do we have the, the, the, uh, the structural erosion zone?

So that means in what, in what part of the BA would you be at risk of getting structural damage? That’s the part where that you want to protect at all costs. And in that, I would look at either shell solution or high duty, um, put urethane coating something that has a a long durability. But then you also need to look at, depending on whether you want to go for coating or shell, you need to look at what is your environmental condition, what is your, you know, yeah.

Your environmental conditions, because you also wanna apply it without it falling off again. Uh, and if you have issues with [00:22:00] high humidity, high temperatures, uh, then a lot of the coatings will be really difficult to process or, you know, to, to. Uh, to handle in the field. And, you know, and if you don’t, if you don’t get that right, then you just might end up with a lot of peeling coating or uh, peeling shells.

Um, so it’s very important to understand what is your environmental conditions that you’re trying to do repairs in. And that’s also why we try not to recommend, uh, these shell repairs over the entire, out a third of the blade. Because you’re, you’re just putting up a lot of risk for, for, uh, for detaching blades if you put on too high, um, uh, how do you say, high height, sea of solutions.

Allen Hall: Yeah. So I, I guess it does matter how much of the blade you’re gonna cover. Is there a general rule of thumb? Like are we covering the outer 10%, outer 20%? What is the. What is that rule of thumb?

Morten Handberg: Typically, you know, you, you get a long way by somewhere between the outer four to six meters. Um, so that would [00:23:00]probably equivalate to the, out of the outer third.

That would likely be something between the outer 10 to 15 to 20% at max. Um, but, but it is, I, I mean, instead of looking at a percentage, I usually look at, okay, what can we see from the data? What does that tell us? And we can see that from the progression of the erosion. Because you can clearly see if you have turbines that’s been operating, what part of the blade has already, you know, exposed laminate.

And where do you only have a light abrasion where you only have a light abrasion, you can just continue with, and with the, with, with the general coating, you don’t need to go for any high tier solutions. And that’s also just to avoid applying, applying something that is difficult to process because it will just end up, that it falls off and then you’re worse off than, than before actually.

Allen Hall: Right. It’s about mitigating risk at some level. On a repair,

Morten Handberg: reducing repair cost. Um, so, so if you, if you look at your, your conditions of your blades and then select a solution that is, that is right for that part of [00:24:00] the blade

Allen Hall: is the best way to repair a blade up tower or down tower is what is the easiest, I guess what’s easier, I know I’ve heard conflicting reports about it.

A lot of people today, operators today are saying we can do it up tower. It’s, it’s pretty good that way. Then I hear other operators say, no, no, no, no, no. The quality is much better if the blade is down on the ground. What’s the recommendation there?

Morten Handberg: In general, it can be done up tower. Um, it is correct if you do a down tower, the quality is better, but that, that, that means you need to have a crane on standby to swap out blades.

Uh, and you should have a spare set of blades that you can swap with. Maybe that can work. Um. But I would say in general, the, your, your, your, your cheaper solution and your more, you know, you know, uh, would be to do up tower. And if, and again, if you do your, your, your homework right and, and selecting the right, uh, products for, for your [00:25:00] local environments, then you can do up tower then leading it, erosion.

Not something that you need to, you should not need to consider during a down tower. Unless you are offshore in an environment where you only have, uh, 10 repair days per year, then you might want to look at something else. But again, if we talk for offs for onshore, I would, I would always go for up, up tower.

I, I don’t, I don’t really see the need for, for, for taking the blades down.

Allen Hall: So what is the optimum point in a blaze life where a leading edge coating should be applied? Like, do you let it get to the point where you’re doing structural repairs or. When you start to see that first little bit of chipping, do you start taking care of it then there I, there’s gotta be a sweet spot somewhere in the middle there.

Where is that?

Morten Handberg: There is sweet spot. So the sweet spot is as soon as you have exposed laminate, because from exposed laminate, uh, the repair cost is exactly the same as if it was just, you know, uh, a light abrasion of the coating because the, the, the time to, to, um, prepare the [00:26:00] surface to apply the coating is exactly the same.

From, you know, from, from, from light surface damage to exposed laminate. That is the same, that is the same repair cost. But as soon as you have a structural damage to your blade, then you have to do a structural repair first, and then you’re, you’re multiplying the repair time and your repair cost. So that is the right point in time.

The way to, to determine when that is, is to do inspections, annual inspections, if you do 10% of your wind farm per year. Then you would know why, what, how the rest of your wind farm looks like because erosion is very uniform across the wind farm. Maybe there are some small deviations, but if you do a subset, uh, then, then you would have a good basic understanding about what erosion is.

You don’t need to do a full sweep of the, of the wind farm to know, okay, now is my right time to do repairs.

Allen Hall: Okay, so you’re gonna have a, a couple years notice then if you’re doing drone inspections. Hopefully you put, as you put your blades up, doing a drone inspection maybe on the ground so you [00:27:00] have a idea of what you have, and then year one, year two, year three, you’re tracking that progression across at least a sampling of the wind farm.

And then, then you can almost project out then like year five, I need to be doing something and I need to be putting it into my budget.

Morten Handberg: When you start to see the first minor areas of exposed laminate. Then the year after, typically then you would have a larger swat of, of laminated exposure, still not as structural.

So when you start to see that, then I would say, okay, next year for next year’s budget, we should really do repairs. It’s difficult when you just direct the wind farm, maybe have the first year of inspection. It’s difficult to get any, any kind of, you know, real sense of what is the, you know, what is the where of scale that we have.

You can be off by a factor of two or three if, you know, if, um, so I would, I would give it a few years and then, uh, then, then, then see how things progresses before starting to make, uh, plans for repairs. If you [00:28:00] don’t have any leading edge erosion protection installed from the start. I would say plan, at least for year, year five, you should expect that you need to go out, do and do a repair.

Again, I don’t have a crystal ball for every, you know, that’s good enough to predict for every wind farm in the world, but that would be a good starting point. Maybe it’s year three, maybe it’s year seven, depending on your local conditions. That is, but then at least you know that you need to do something.

Allen Hall: Well, there’s been a number of robotic, uh, applications of rain erosion coatings. Over the last two, three years. So now you see several different, uh, repair companies offering that. What does the robotic approach have to its advantage versus technicians on ropes?

Morten Handberg: Obviously robots, they don’t, they don’t, uh, get affected by how good the morning coffee was, what the latest conversation with the wife was, or how many hours of sleep it got.

There is something to, with the grown operator, uh, you know how good they are. But it’s more about how well, uh, [00:29:00] adjusted the, the controls of the, of the, the robot or the drone is in its application. So in principle, the drone should be a lot better, uh, because you can, it will do it the right, the same way every single time.

What it should at least. So in, so in principle, if you, you, you, when we get there, then the leading it then, then the robot should be, should outmatch any repair technician in, in the world. Because repair technician, they’re really good. They’re exceptionally good at what they do. The, the, the far majority of them, but they’re, they’re still people.

So they, you know, anyone, you know, maybe standing is not a hundred percent each time, maybe mixing of. Um, of materials and they’re much better at it than I am. So no question there. But again, that’s just real reality. So I would say that the, the, the draw, the robots, they should, uh, they should get to a point at some, at some point to that they will, they will be the preferable choice, especially for this kind of, this kind of repair.

Allen Hall: What should [00:30:00] operators be budgeting to apply a coating? Say they’re, you know, they got a new wind farm. It’s just getting started. They’re gonna be five years out before they’re gonna do something, but they, they probably need to start budgeting it now and, and have a scope on it. ’cause it’s gonna be a capital campaign probably.

How much per turbine should they be setting aside?

Morten Handberg: I would just, as a baseline, at least set aside 20,000 per per blade

Allen Hall: dollars or a Corona

Morten Handberg: dollars.

Allen Hall: Really. Okay.

Morten Handberg: Assuming that you actually need to do a repair campaign, I would say you’re probably ending up in that region again. I can be wrong with by a factor of, you know, uh, by several factors.

Uh, but, um, but I would say that as a starting point, we don’t know anything else. I would just say, okay, this should be the, the, the, the budget I would go for, maybe it’ll be only 10 because we have a lesser campaign. Maybe it will be twice because we have severe damages. So we need just to, to, to source a, um, a high end, uh, LEP solution.

Um, so, so [00:31:00] again, that would just be my starting point, Alan. It’s not something that I can say with accuracy that will go for every single plate, but it would be a good starting point.

Allen Hall: Well, you need to have a number and you need to be, get in the budget ahead of time. And so it, it’s a lot easier to do upfront than waiting till the last minute always.

Uh, and it is the future of leading edge erosion and protection products. Is it changing? Do you see, uh, the industry? Winning this battle against erosion.

Morten Handberg: I see it winning it because we do have the technology, we do have the solutions. So I would say it’s compared to when we started looking at it in 14, where, you know, we had a lot of erosion issues, it seems a lot more manageable.

Now, of course, if you’re a, if you’re a new owner, you just bought a wind farm and you’re seeing this for this first time, it might not be as manageable. But as an, as an industry, I would say we’re quite far. In understanding erosion, what, how it develops and what kind of solutions that that can actually, uh, withstand it.

We’re still not there in [00:32:00] terms of, uh, quality in, in repairs, but that’s, um, but, but, uh, I, I think technology wise, we are, we are in a really good, good place.

Allen Hall: All the work that has been done by DTU and RD test systems for creating a rain erosion test. Facility and there’s several of those, more than a dozen spread around the world at this point.

Those are really making a huge impact on how quickly the problem is being solved. Right? Because you’re just bringing together the, the, the brain power of the industry to work on this problem.

Morten Handberg: They have the annual erosion Symposium and that has been really a driving force and also really put DTU on the map in terms of, uh, leading edge erosion, understanding that, and they’re also trying to tie, tie it in with lightning, uh, because, uh.

If you have a ro, if you have erosion, that changes your aerodynamics. That in fact changes how your LPS system works. So, so there is also some, some risks in that, uh, that is worth considering when, when, when discussing [00:33:00]repairs. But I think these of you, they’ve done a tremendous amount of work and r and d system have done a lot of good work in terms of standardizing the way that we do rain erosion testing, whether or not we can then say with a hundred uncertainty that this, uh, this test will then match with.

With, um, how say local environment conditions, that’s fine, but we can at least test a DP systems on, on the same scale and then use that to, to, to look at, well how, how good would they then ferry in in the, um, out out in the real world.

Allen Hall: Yeah, there’s a lot too leading edge erosion and there’s more to come and everybody needs to be paying attention to it.

’cause it, it is gonna be a cost during the lifetime of your wind turbines and you just need to be prepared for it. Mor how do people get ahold of you to learn more about leading edge erosion and, and some of the approaches to, to control it?

Morten Handberg: Well, you can always re reach me, uh, on my email, meh, at wind power.com or on my LinkedIn, uh, page and I would strongly advise, you know, reach out if you have any concerns regarding erosion or you need support with, um, [00:34:00] uh, with blade maintenance strategies, uh, we can definitely help you out with that.

Or any blade related topic that you might be concerned about for your old local wind farm.

Allen Hall: Yes. If you have any blade questions or leading edge erosion questions, reach out to Morton. He’s easy to get ahold of. Thank you so much for being back on the podcast. We love having you. It

Morten Handberg: was fantastic being here.

Cheers. A.

Morten Handberg Breaks Down Leading Edge Erosion

Continue Reading

Renewable Energy

Who Decides What is Good and Bad?

Published

on

Is this really a problem? We can all agree that adequate food and housing are good things, and that hunger and homelessness are bad.

Who Decides What is Good and Bad?

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com