Connect with us

Published

on

Two and a half years ago, at the COP26 climate summit in Glasgow, South Africa signed a first-of-its-kind agreement with wealthy nations to collaborate on rolling out clean energy to replace coal in a socially fair manner.

President Cyril Ramaphosa described the $8.5 billion “Just Energy Transition Partnership” (JETP) as a “watershed moment” – and then British Prime Minister Boris Johnson called it a “game-changing partnership”.

But, as South Africa prepares to head to the polls next Wednesday in an election that could force Ramaphosa’s ruling party to share power for the first time since apartheid ended, there is still little to show for the energy transition deal on the ground.

Africa must reap the benefits of its energy transition minerals

Crispian Olver, executive director of the Presidential Climate Commission which is advising the government on the JETP, told Climate Home: “This is a bit like trying to turn a big container-ship – it’s slow to shift onto a new path, but once it’s on that new course, things will start to move faster.”  

As of last November, just $308 million of grant-funded projects under the JETP had reached the implementation phase, government data shows. Of this, just $30m was categorised as spending on the just transition in the coal-dependent Mpumalanga province.

The government has not published equivalent information on loans – which make up 97% of the donor-backed support. But those following the JETP say progress has been slow partly because South Africa’s state-owned electricity generator Eskom is reluctant to take on more debt.

In addition, South Africa’s energy ministry and the wealthy governments that are providing funding disagree on the role of gas in the country’s energy transition. The donors backing the JETP are the US, Canada, Britain, Switzerland, the European Union, the Netherlands, Germany, France, Denmark and Spain.

Coal plant closures have been delayed by South Africa’s lack of reliable electricity, which has led to rolling power black-outs known as “load-shedding”.

While problems affecting the coal sector are a key cause of unreliable electricity supplies, Eskom has said it will delay the closure of three coal-fired power plants in response to the crisis. 

South Africa’s best wind and solar resources, in the south and west, meanwhile remain under-utilised because the national power grid is already congested in those areas.

Azerbaijan pursues clean energy to export more ‘god-given’ gas to Europe

To transport the clean power, Eskom is trying to build transmission cables but progress has been slow as the utility is deeply in debt and reluctant to take on new loans through the JETP – even if those loans are offered on cheap terms.

An Eskom spokesperson said that “off-balance sheet options” – like allowing the private sector to build cables and substations – are being considered, but the details are still to be finalised. 

Electricity cables at South Africa’s Lethaba power station in 2007 (Photos: World Bank)

Yet not all government departments want a rapid transition to renewables. The Department of Mineral Resources and Energy (DMRE), led by pro-coal minister Gwede Mantashe, recently published an energy planning document that envisages a sharp slowdown in the roll-out of solar and wind power and instead more of a shift from coal to gas power plants.   

This has complicated things for the international partner group behind the JETP. Two people with knowledge of the negotiations told Climate Home that South Africa’s apparent reticence to switch to renewables is slowing the pace of funding flows under the deal. 

On the other hand, South Africa’s parliament recently approved a Climate Change Bill and a Electricity Regulation Amendment Bill, which seeks to create a competitive power market and end Eskom’s century-long, coal-dominated monopoly. The legislation will render the DMRE’s controversial gas-reliant energy plans less relevant, as it paves the way for more electricity to be produced by private companies.

Energy minister Gwede Mantashe (left) speaks to President Cyril Ramaphosa (right) in 2018 (Photos: South African government)

But that has done little to appease anxious workers and residents in the heart of the country’s coal belt. In particular, the town of Komati offers a warning of the electoral damage that can occur if coal-plant repurposing projects don’t go smoothly. 

Eskom’s coal-fired power station in Komati was retired from service in October 2022 after reaching its end-of-life date. It is now being converted into a solar, wind and food farm, a solar microgrid assembly factory and training facility.

Parts of it are now starting to open but for many local people, it is too little too late. “The community is currently facing a pandemic of unemployment and poverty,” said community leader Carlos Vilankulu, who is also a repurposing project liaison officer. 

Eskom says none of its workers lost their jobs when the last coal units were taken offline – many were transferred to other power stations. But local guesthouses and other small businesses in the community say they are struggling as a result of the closure. 

South Africa voters head to the polls still waiting a "just energy transition"

A man selling second-hand tyres waits for customers in Komati village, May 9, 2024 (Photo: REUTERS/Siphiwe Sibeko)

“Everything has come to a standstill. Many people are unemployed,” said Alta de Bruin, a guest-house owner based in Komati village. While the repurposing project has generally been well received, it “could have started a long time ago”, de Bruin told Climate Home.

The decision to close down Komati was made long before South Africa agreed to its climate finance package at COP26, but the local transformation project is intended to serve as a blueprint for other just transition initiatives in the country.  

It has been a cautionary tale, according to Olver. Community consultations on the way forward only took place years after the decision was made to shut Komati – meaning local residents and businesses were left in a state of limbo. The next [coal power] stations will do it better, he said.

Besides South Africa, JETPs have also been signed with Indonesia, Vietnam and Senegal. Leo Roberts, an analyst with climate change think-tank E3G, said South Africa’s delays in closing down its coal plants are concerning.

Indonesia has also postponed coal plant closures after expressing disappointment with rich countries’ support, while Vietnam’s partnership has ground to a halt amid political turmoil.

“We mustn’t lose sight of what the JETPs need to deliver,” Roberts said. “This is ultimately about reducing emissions to avoid catastrophic climate change, dealing with the huge health pollution challenges coal causes, and supporting countries to deliver self-defined low-carbon development pathways.”

(Reporting by Nick Hedley; editing by Joe Lo and Megan Rowling)

The post As South Africa heads to the polls, voters await stalled “just energy transition” appeared first on Climate Home News.

As South Africa heads to the polls, voters await stalled “just energy transition”

Continue Reading

Climate Change

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Published

on

Weather disasters are shared experiences in the Maine foothills and communities are preparing for a wetter, warmer future.

The December 2023 flood. The 2022 Halloween storm. The Patriots Day storm of 2007. The Great Ice Storm of 1998.

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Continue Reading

Climate Change

Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

Published

on

In Kenya’s Laikipia County where temperatures can reach as high as 30 degrees Celsius, a local building technology is helping homes stay cooler while supporting education, creating jobs and improving the livelihoods and resilience of community residents, Climate Home News found on a visit to the region.

Situated in a semi-arid region, houses in Laikipia are mostly built with wood or cement blocks with corrugated iron sheets for roofing. This building method usually leaves the insides of homes scorching hot – and as global warming accelerates, the heat is becoming unbearable.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, lived in these harsh conditions until 2023, when the Laikipia Integrated Housing Project began in his community.

Nine of our best climate stories from 2025

The project uses compressed earth block (CEB) technology, drawing on traditional building methods and local materials – including soil, timber, grass and cow dung – to keep buildings cool in the highland climate. The thick earth walls provide insulation against the heat.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

“Especially around the months of September all the way to December, it is very, very hot [in Laikipia], but as you might have noticed, my house is very cool even during the heat,” Muthui told Climate Home News.

His school has also deployed the technology for classrooms and boarding hostels to ensure students can carry on studying during the hottest seasons of the year. This way, they are protected from severe conditions and school closures can be avoided. In South Sudan, dozens of students collapsed from heat stroke in the capital Juba earlier this year, causing the country to shutter schools for weeks.

COP30 sees first action call on sustainable, affordable housing

The buildings and construction sector accounts for 37% of global emissions, making it the world’s largest emitter of greenhouse gases, according to the UN Environment Programme (UNEP). While calls to decarbonise the sector have grown, meaningful action to cut emissions has remained limited.

At COP28 in Dubai, the United Arab Emirates and Canada launched the Cement and Concrete Breakthrough Initiative to speed up investment in the technologies, policies and tools needed to put the cement and concrete industry on a net zero-emissions path by 2050.

Canada’s innovation minister, François-Philippe Champagne, said the initiative aimed to build a competitive “green cement and concrete industry” which creates jobs while building a cleaner future.

    Momentum continued at COP30, where the Intergovernmental Council for Buildings and Climate (ICBC) held its first ministerial meeting and adopted the Belém Call for Action for Sustainable and Affordable Housing.

    Coordinated by UNEP’s Global Alliance for Buildings and Construction, the council has urged countries to embed climate considerations into affordable housing from the outset, “ensuring the drive to deliver adequate homes for social inclusion goes hand in hand with minimising whole-life emissions and
    environmental impacts”.

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    With buildings responsible for 34% of energy-related emissions and 32% of global energy demand, and 2.8 billion people living in inadequate housing, the ICBC stressed that “affordable, adequate, resource-efficient, low-carbon, climate-resilient and durable housing is essential to a just transition, the achievement of the Sustainable Development Goals and the effective implementation of the Paris Agreement”.

    Compressed earth offers local, green alternative

    By using locally sourced materials, and just a little bit of cement, the compressed earth technology is helping residents in Kenya’s Laikipia region to build affordable, climate-smart homes that reduce emissions and environmental impacts while creating economic opportunities for local residents, said Dacan Aballa, construction manager at Habitat for Humanity International, the project’s developers.

    Aballa said carbon emissions in the construction sector occur all through the lifecycle, from material extraction, processing and transportation to usage and end of life. However, by switching to compressed earth blocks, residents can source materials available in their environment, avoiding nearly all of that embedded carbon pollution.

    According to the World Economic Forum (WEF), global cement manufacturing is responsible for about 8% of total CO2 emissions, and the current trajectory would see emissions from the sector soar to 3.8 billion tonnes per year by 2050 – a level that, compared to countries, would place the cement industry as one of the world’s top three or four emitters alongside the US and China.

    Tripling adaptation finance is just the start – delivery is what matters

    Comparing compressed earth blocks and conventional materials in terms of carbon emissions, Aballa said that by using soil native to the area, the process avoids the fossil fuels that would normally have been used for to produce and transport building materials, slashing carbon and nitrogen dioxide emissions.

    The local building technology also helps save on energy that would have been used for cooling these houses as well as keeping them warm during colder periods, Aballa explained.

    Justin Atemi, water and sanitation officer at Habitat for Humanity, said the brick-making technique helps reduce deforestation too. This is because the blocks are left to air dry under the sun for 21 days – as opposed to conventional fired-clay blocks that use wood as fuel for kilns – and are then ready for use.

    Women walk passed houses in the village of Kangimi, Kaduna State, Nigeria (Photo: Sadiq Mustapha)

    Traditional knowledge becomes adaptation mechanism

    Africa’s red clay soil was long used as a building material for homes, before cement blocks and concrete became common. However, the method never fully disappeared. Now, as climate change brings higher temperatures, this traditional building approach is gaining renewed attention, especially in low-income communities in arid and semi-arid regions struggling to cope with extreme heat.

    From Kenya’s highlands to Senegal’s Sahelian cities, compressed earth construction is being repurposed as a low-cost, eco-friendly option for homes, schools, hospitals – and even multi-storey buildings.

    Senegal’s Goethe-Institut in Dakar was constructed primarily using compressed earth blocks. In Mali, the Bamako medical school, which was built with unfired mud bricks, stays cool even during the hottest weather.

    And more recently, in Nigeria’s cultural city of Benin, the just-finished Museum of West African Art (MOWA) was built using “rammed earth” architecture – a similar technology that compresses moist soil into wooden frames to form solid walls – making it one of the largest such structures in Africa.

    The post Earth blocks keep homes cool while cutting emissions in Kenya’s drylands appeared first on Climate Home News.

    Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

    Continue Reading

    Climate Change

    Using energy-hungry AI to detect climate tipping points is a paradox

    Published

    on

    David Sathuluri is a Research Associate and Dr. Marco Tedesco is a Lamont Research Professor at the Lamont-Doherty Earth Observatory of Columbia University.

    As climate scientists warn that we are approaching irreversible tipping points in the Earth’s climate system, paradoxically the very technologies being deployed to detect these tipping points – often based on AI – are exacerbating the problem, via acceleration of the associated energy consumption.

    The UK’s much-celebrated £81-million ($109-million) Forecasting Tipping Points programme involving 27 teams, led by the Advanced Research + Invention Agency (ARIA), represents a contemporary faith in technological salvation – yet it embodies a profound contradiction. The ARIA programme explicitly aims to “harness the laws of physics and artificial intelligence to pick up subtle early warning signs of tipping” through advanced modelling.

    We are deploying massive computational infrastructure to warn us of climate collapse while these same systems consume the energy and water resources needed to prevent or mitigate it. We are simultaneously investing in computationally intensive AI systems to monitor whether we will cross irreversible climate tipping points, even as these same AI systems could fuel that transition.

    The computational cost of monitoring

    Training a single large language model like GPT-3 consumed approximately 1,287 megawatt-hours of electricity, resulting in 552 metric tons of carbon dioxide – equivalent to driving 123 gasoline-powered cars for a year, according to a recent study.

    GPT-4 required roughly 50 times more electricity. As the computational power needed for AI continues to double approximately every 100 days, the energy footprint of these systems is not static but is exponentially accelerating.

    UN adopts first-ever resolution on AI and environment, but omits lifecycle

    And the environmental consequences of AI models extend far beyond electricity usage. Besides massive amounts of electricity (much of which is still fossil-fuel-based), such systems require advanced cooling that consumes enormous quantities of water, and sophisticated infrastructure that must be manufactured, transported, and deployed globally.

    The water-energy nexus in climate-vulnerable regions

    A single data center can consume up to 5 million gallons of drinking water per day – sufficient to supply thousands of households or farms. In the Phoenix area of the US alone, more than 58 data centers consume an estimated 170 million gallons of drinking water daily for cooling.

    The geographical distribution of this infrastructure matters profoundly as data centers requiring high rates of mechanical cooling are disproportionately located in water-stressed and socioeconomically vulnerable regions, particularly in Asia-Pacific and Africa.

    At the same time, we are deploying AI-intensive early warning systems to monitor climate tipping points in regions like Greenland, the Arctic, and the Atlantic circulation system – regions already experiencing catastrophic climate impacts. They represent thresholds that, once crossed, could trigger irreversible changes within decades, scientists have warned.

    Nine of our best climate stories from 2025

    Yet computational models and AI-driven early warning systems operate according to different temporal logics. They promise to provide warnings that enable future action, but they consume energy – and therefore contribute to emissions – in the present.

    This is not merely a technical problem to be solved with renewable energy deployment; it reflects a fundamental misalignment between the urgency of climate tipping points and the gradualist assumptions embedded in technological solutions.

    The carbon budget concept reveals that there is a cumulative effect on how emissions impact on temperature rise, with significant lags between atmospheric concentration and temperature impact. Every megawatt-hour consumed by AI systems training on climate models today directly reduces the available carbon budget for tomorrow – including the carbon budget available for the energy transition itself.

    The governance void

    The deeper issue is that governance frameworks for AI development have completely decoupled from carbon budgets and tipping point timescales. UK AI regulation focuses on how much computing power AI systems use, but it does not require developers to ask: is this AI’s carbon footprint small enough to fit within our carbon budget for preventing climate tipping points?

    There is no mechanism requiring that AI infrastructure deployment decisions account for the specific carbon budgets associated with preventing different categories of tipping points.

    Meanwhile, the energy transition itself – renewable capacity expansion, grid modernization, electrification of transport – requires computation and data management. If we allow unconstrained AI expansion, we risk the perverse outcome in which computing infrastructure consumes the surplus renewable energy that could otherwise accelerate decarbonization, rather than enabling it.

      What would it mean to resolve the paradox?

      Resolving this paradox requires, for example, moving beyond the assumption that technological solutions can be determined in isolation from carbon constraints. It demands several interventions:

      First, any AI-driven climate monitoring system must operate within an explicitly defined carbon budget that directly reflects the tipping-point timescale it aims to detect. If we are attempting to provide warnings about tipping points that could be triggered within 10-20 years, the AI system’s carbon footprint must be evaluated against a corresponding carbon budget for that period.

      Second, governance frameworks for AI development must explicitly incorporate climate-tipping point science, establishing threshold restrictions on computational intensity in relation to carbon budgets and renewable energy availability. This is not primarily a “sustainability” question; it is a justice and efficacy question.

      Third, alternative models must be prioritized over the current trajectory toward ever-larger models. These should include approaches that integrate human expertise with AI in time-sensitive scenarios, carbon-aware model training, and using specialized processors matched to specific computational tasks rather than relying on universal energy-intensive systems.

      The deeper critique

      The fundamental issue is that the energy-system tipping point paradox reflects a broader crisis in how wealthy nations approach climate governance. We have faith that innovation and science can solve fundamental contradictions, rather than confronting the structural need to constrain certain forms of energy consumption and wealth accumulation. We would rather invest £81 million in computational systems to detect tipping points than make the political decisions required to prevent them.

      The positive tipping point for energy transition exists – renewable energy is now cheaper than fossil fuels, and deployment rates are accelerating. What we lack is not technological capacity but political will to rapidly decarbonize, as well as community participation.

      IEA: Slow transition away from fossil fuels would cost over a million energy sector jobs

      Deploying energy-intensive AI systems to monitor tipping points while simultaneously failing to deploy available renewable energy represents a kind of technological distraction from the actual political choices required.

      The paradox is thus also a warning: in the time remaining before irreversible tipping points are triggered, we must choose between building ever-more sophisticated systems to monitor climate collapse or deploying available resources – capital, energy, expertise, political attention – toward allaying the threat.

      The post Using energy-hungry AI to detect climate tipping points is a paradox appeared first on Climate Home News.

      Using energy-hungry AI to detect climate tipping points is a paradox

      Continue Reading

      Trending

      Copyright © 2022 BreakingClimateChange.com