We4Ce & CNC Onsite’s Re-FIT Blade Root Repair Goes Global
Edo Kuipers from We4Ce and Søren Kellenberger from CNC Onsite discuss their Re-FIT blade root repair solution, which has been successfully implemented at a wind farm in Southeast Asia. The solution allows operators to keep blades onsite while repairing critical blade root bushing failures.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the Progress Powering Tomorrow.
Allen Hall: Ed0o and Soren, welcome to the program.
Edo Kuipers: Thank you very much.
Thank you both.
Allen Hall: We have some really exciting news from you, from the field, but first I, I want to start with the problem, which. A lot of operators have right now, which is this blade root, bushing it in or insert issue, which is really critical to blades and you’re the creator of the device that’s gonna save a lot of blades.
You want to talk about what happens? When these blade root bushings fail?
Edo Kuipers: Uh, yeah. What we have seen is that it especially concerns, um, uh, polyester type of blades. And what we see is that, um, bushings and, and, and composites, they are not attached to each other anymore. And after a [00:01:00] while, blades are simply flying off.
That’s the, that’s the whole, that’s the whole problem. Of course. And now going back to the root cause, the root cause here is we are working with, with foes and. The fact is that if you’re working with polyesters, they already have, um, at the, uh, uh, during the process, the curing process, they have already curing shrinkages.
So we have already curing shrinkages, which means we have already initial micro flagging going on, on the interface between the bushing and, and, and, and the limited around it. And that reduces, that reduces the um, surface. Carrying area. And by doing so, because we have less area, surface area that can transfer the loads from the hub, um, from the blades to the hub, eh, we have limited amount of, of years on running.
So we are reducing, uh, the, the amount of years [00:02:00] that the blades are on the, on the, on the turbine safely.
Joel Saxum: This problem is compounding right now simply because there’s a lot of the global wind turbine fleet that’s starting to age. Right. Like we, we, we went through a big push in, you know, the early two thousands, 2000 tens, 2000 twenties to now where, you know, if you look at the country of Spain, we hear that regularly, Alan is, Hey, we’re getting to the end of life.
We’re close to the end of life. Then there’s people saying, what is the remaining useful life? Where are we at? Um, and this is one of those issues where. It can develop rapidly, right? So if there’s an issue, you can, if you catch it in time, great. You’re good. But it can develop rapidly and that can lead to catastrophic losses.
But I guess my, one of the questions I want to ask you, and you guys of course have done some commercial here. Uh, how many turbines do you think are affected by this globally affected by this root bushing issues?
Edo Kuipers: Oh, that’s a good one. If I, if I talk a number of blades at the moment, we are more or less at a ball point figure about 30, [00:03:00] 40,000.
Blades. Wow. Worldwide. So we see many us, we see many in South America and we see also in Southeast Asia, like India. And those blades are running, let’s say from 10 years, 12 years, and some of them also after six years,
Allen Hall: and a lot of manufacturing. Uh, blades happens in multiple sites, right? So if you have a particular OEM wind turbine, you may have a variety of different blades on your site.
You typically do. Some of them are polyesters, some of them may be epoxy, but it’s the polyester ones we need to pay attention to first, right?
Edo Kuipers: Correct. The one we are, uh, concentrating on with our solution are dealing with polyester blades because there we see the problem, especially in the, in the interface layer.
There are also root problems with epoxy types, but they are from a, from a different level.
Allen Hall: So the thing that we’re looking for when we start to see [00:04:00]the problem, so if I’m an operator and I have technicians out in the field and they’re looking at blades from the ground, typically very quickly, what are the first signs that you have problems with the bushings?
Edo Kuipers: What we generally see, the first signs is that there is a cracking going on in the ceiling, which is between the blade. The pitch bearing. So if you go up tower as a surface guy, then then look for those initial cracks, and if you see cracking, cracking in that sealant, then remove the sealant just by with a knife and, and, and go with a fill gauge to see if you’re caping going on between the root lum.
Uh, so between the bushing and the, and the, and the pitch bearing,
Allen Hall: so that sealant or gasket between the blade and the pitch bearing shouldn’t be moving or shouldn’t have flexed it. It shouldn’t have broken. It can flex. It’s made to flex a little bit, but if it breaks, it tells you there’s too much stress [00:05:00] on that sealant.
That’s really the first sign.
Edo Kuipers: That’s really the first sign. Then you still have time, but then you have to start monitoring
Allen Hall: and the, the monitoring is telling you what,
Edo Kuipers: once you. Notice this. What you have to do is, for example, you are positioning a leading edge, uh, under the tensile loading of the dead weight.
Then you measure a cap, then you pitch the blade, eh, that the, that, the, that the, that, that side is down. So it’s, it’s, it’s feeling a compressive loading, and then you can see if there is a difference. So what you’re doing is you’re measuring the variable cap. That’s a static gap, but the variation of the capping due to the, due to its own weight of the blade, and that is a sign that that movement is going on.
Allen Hall: So you’ll see compression versus tension, that gap get larger and smaller. There is always some movement in that gap, but it’s very limited if you, what typically is a threshold where you say. [00:06:00] If it’s beyond a couple of millimeters, that’s a problem. Where is that dimensional gap become an issue
Edo Kuipers: with our present customers?
We are saying, um, um, one millimeter and you have to hoist, uh, hoist the blade down.
Allen Hall: One millimeter is 40 thousandths of an inch. That’s not very much.
Edo Kuipers: If it’s, for example, five millimeters, I mean. It’s, it’s not, you’re in a, in a bad stage that within three months your, your blood, your blade could fly off.
And if you are in, in the range of one millimeter, the nice thing on that is that you have a limited amount of bushings, which needs to be replaced. So you are li limiting the effect of the repair.
Joel Saxum: So, but that’s the big thing here, right? So catching it early, it’s like anything in blades, we talk about this.
We’ve been, we’ve been beating this, this horse for a long time. Catch it early, fix it early, or you’re gonna be in a bad state. Because I mean, the, the, the worst thing that happens here, of course is the safety issue, loss of life or anything like that. But what? But the, [00:07:00] what We have seen blade breaks, blade comes down, hits the tower.
Then the tower comes down, then you’re replacing an entire turbine. And that’s, that’s horrible for the operator, the industry, everything in, in, in general. Um, but if you catch it early, now each blade has de, depending on the model, the make the design, um. 60 to 80 bushings. 60 to a hundred bushings. What’s that number?
Edo Kuipers: Yeah. 92 for example. Or 74 or, yeah. In that area.
Joel Saxum: Right. So, so, and when you, and when your solution is engaged, when the, you have to bring the, bring the blade down tower and then fix it if you catch it early. Are you talking, we’re fixing six of these, we’re fixing 40 of these. What does it usually look like?
Edo Kuipers: It’s, uh, in the, in the area of 24 to 30.
Joel Saxum: Okay.
Edo Kuipers: The nice thing on that, the nice thing is on that if we working with a drilling machine, we can do that in 24 hours drilling. So limited time. Limited time of, of [00:08:00] taking out the bushings. And if we would wait longer and we need to repair 60 bushings, it takes, let’s say 60 hours to, to drill out, so to lower the cost of the repair.
Because it’s like a chain reaction. Once it starts, it, it grows to lower the amount of the repair and the cost of repair, let’s, let’s not wait too long.
Allen Hall: Okay. So that’s a really good input into this discussion because I think a lot of operators assume if I have to do this repair, replace the bushings, I’m replacing a number of bushings regardless of the level of damage, because they’re gonna fail eventually.
But you know, what you’re saying is that. It starts in a highly loaded couple of bushings and spreads from there, if you can, if you can fix or upgrade those particular bushings, then the remaining bushings may be okay.
Edo Kuipers: Correct. Because there is always a highly loaded, like you said, and there’s always a a side which is more tensile loaded, and the other side is more compressive loaded, and especially the tensile loaded part is, is [00:09:00]more severely for the fatigue.
Joel Saxum: The other side of this is a blade replacement. So you’re either gonna, you’re going to have to, you’re gonna do something like this, or you’re gonna replace the blade. And, but now again, we’re talking about this aging fleets remaining useful life, what spares look like out in the field. A lot of these turbines.
Spares are not readily available for them. Right. If we’re talking about, and we’re talking about different markets like you, you ju you guys just executed. We’re gonna talk about this a little bit, but you just executed this amazing project, uh, over in the APAC region. It’s not easy to get blades shipped over there, or like in Australia or South America, like in the States.
We’re kind of lucky people don’t realize this, but we’re kind of lucky that we have a fleet of 75,000 turbines because there are spares around for some things. However, as these blades get older, like nobody’s gonna do you a run of a 12-year-old, 15-year-old blade, it’s what, whatever’s on the ground around the world is what we have.
And that is it Ev And then in composites, again, everything can be repaired, but it’s just how much, what is the [00:10:00] economic case for? So you guys are building that economic case to make this make sense.
Edo Kuipers: A new blade, let’s, let’s. Have the old fashioned prices of 10 euros per kilo or whatever, and you have a blade of 15 tons that will cost you like 150,000 euros.
As a new blade, you already paid for that price. Then you have to do it a second time. It’s not only that, it’s also the waiting time. If you have to wait for one year, your loss, your loss in, in, in, in, in, in revenue. Also, let’s say like 100, 150, maybe 200,000 depending on your feed into reef tariffs that you get.
It’s also, that’s also a loss. So the total thing will cost you already like easily like 200, 300,000 euros for for one turbine, right? Or one for one rot blade. If you do a repair, then there’s a repair. It’ll cost you like a fraction of that. It’ll cost you maybe like 30, 40,000 euros.
Joel Saxum: Yeah. And the reality is, is when you [00:11:00] replace one blade, you normally are replacing all three.
I mean, unless you, unless you can find a, a matching, you know, a good, well you, you get lucky and you find one blade that has the weight certificate and a bending moment certificate that matches your other. Two that are up tower. Mm, pretty rare. More than likely you’re getting all three new blades. So then all of a sudden your 150 turns into 450 before you even start it.
Soren Kellenberger: Absolutely. And that’s, that’s if you can get a replacement blade because if you need to go back to a, a manufacturer Right, they, they will not sell you that blade for the original 150,000 Euros. Uh, so. If they at all have a mold before they get it started up and all the initial cost in, in getting that up and running, you are looking at 2, 3, 4 times the price of the, of the new blade.
So it, it really adds up if you have to replace. And there’s of course also the whole discussion right now with, um, the old blades and all the waste it’s, uh, creating. So from an environmental perspective, it’s [00:12:00] also a huge benefit to, uh, repairs instead have replaced. Uh, but, but the financial is, it’s just, uh, yeah.
Basically a no brainer, right?
Allen Hall: Oh yeah. The financials make total sense. And this is where we’re gonna get to the solution from WE four C, which is called Refit, which is a, a bushing upgrade and the workings together of two separate companies. So we have WE four C, which is, uh, based in the Netherlands of course, and then we.
We have Sorin and CNC onsite, which is based in Denmark, so they’re really relatively close to one another, and both companies are powerhouses in wind and, and fixing wind and making it more efficient and getting our turbines optimized for long-term duration, which. What we in the states have not been doing, but we’re, that’s gonna rapidly change in the next couple of months.
Uh, so this refit solution does make a lot of sense to me just because the demand is [00:13:00] gonna be there and we need to have some way of doing this. And, uh, this is what I want to talk to both of you about, because understanding how to replace these bushings, it, it seems at first, like it’s an impossible task.
You brought two powerhouses together to solve this problem. You wanna discuss how the two companies work together, we foresee and CNC onsite, and how this, uh, repair rework is accomplished.
Soren Kellenberger: I think if we, if we take it back a step, um, we at CNC or uh, onsite was originally involved in a plate repair project.
Uh. Before, actually before the, the Corona uh, uh, situation. Uh, so we had worked on a machine and made some, uh, tests in, in our workshop on this repair, drilling out bushings. Um, then Corona came and the project was stopped and never restarted again. So about four years, pretty much to the, [00:14:00] to the date because it was at the Huon wind, which is now coming up again in, in one and a half week.
Um, we were in, we met, uh, we foresee, uh, so we had this drilling technology sitting there, and I walked around and I saw these, uh, nice, uh, bushings and, and, uh, a couple of nice gentlemen standing there. So I approached, uh, IDO and, and Arnold and said, uh, Hey guys, this, uh, this, this looks nice. What is it? And, uh, we started talking about that.
Uh, they actually had the. Pushing technology ready. They needed someone who could drill out the old ones. And yeah, we had the technology to drill out the old ones and needed someone who could insert those replacement pushing. So it was actually, um, a very, a very good fit. And then the whole corporation just started off basically on trust.
I mean, we signed the NDA and stuff like that, but we just trusted each other and, and moved, uh, forward. And it took some time before getting to the first customer also. What you mentioned in the [00:15:00] beginning, right, Alan, that there’s, yeah, it looks nice, but has it been done before? It’s been, we’ve heard that question, uh, a lot of times.
Um, so it took some time before we got through all the testing and stuff like that, but, uh, now it’s up and running and, uh, works really well.
Edo Kuipers: At the third point, the customer said to us, if you can show a test with this number of cycles and fatigue, it was something like a certain level and a 1 million cycles test.
If you can show that to me, then we will sign the contract. So we sent two coupons, you one to a, to a Dutch Institute, independent, one to a German Institute who was doing um, um, coupon testings. And we said, okay, run it. Run them off both for 1 million cycles. And they had, they had the same result. So, and both, both have reached the 1 million cycles.
So we said to the customers, we did not provide one component with 1 million cycles, but two for you to, to make sure. And also at different test institute. [00:16:00] And then they signed the contract and at all went. Very fast after that.
Allen Hall: Well, yeah, if as soon as you can show the technology works in the laboratory, the next step is to get it deployed.
So the, the, the process works sort of like this. And, and stop me if I’m too far off because I’ve had to explain to me very slowly. Ada has done this very carefully. So let’s see if I can, uh, explain it to the teacher. I’m gonna take, I’m gonna remove the blade off. I’m gonna bring the blade down, and they’re gonna call Soren’s people at CNC onsite.
And they’re going to actually. Have tooling this amazing tooling to drill out this old bushing and make it such that this ados wonderful refit solution can slide into this new drilled spot that’s been perfectly honed. And this new bushing goes in and there’s a bunch of epoxies added behind it to hold that new bushing in place.
And then once that’s done, I move to the next one. And because the system is set up with CNC onsite to have [00:17:00] to go ahead and, and drill out multiple bushings, uh, very quickly, this process, once the blade is down, is actually very quick. So you’re talking about maybe a couple of days total to repair a blade that otherwise would be
Edo Kuipers: discarded.
This is, I’m very happy with this at the moment. And this is also with thanks to the um, uh, to the criteria, to the cap measurements of up tower we are doing. So this is the first step we have to do, of course. But thanks to that we only need a limited amount of bushing. So we are doing, let’s say like 24 to 30 bushings are being drilled out.
This takes us. 24 hours, more or less, we are doing it. We could do it in three shifts, so then it’s one day, but we are not doing it in one sh one shift. They, they are working neatly, they are working accurate and with the same team. And so they are doing three days. After these three days, they are, they are done with the drilling.
Um, then we need to start the [00:18:00] preparations, so the new bushings needs to be implemented. That will take us, let’s say like eight hours of preparations, because everything needs to be far tight and that that is essential for our solution. It needs to be low, far level, so all the air out. And then after this, that takes about eight hours, and after that we have the infusion day.
That’s a really exciting day always, because once. The resin is running. We can’t stop it anymore. Right? So this, this day is also, let’s say eight hours. So, and then we have some finishing because it would be nice if we are hoisting up the blade again. A tower that the, that the root is, is flat. Yeah. All the resin pieces are off.
And we may have to make sure that, uh, that all the, all the bushings are aligned well for the proper load distributions. Um, another, let’s say another few hours, maybe eight hours. So then we are 48 hours, 50 hours of the whole process working with three or four people. That’s it.
Allen Hall: [00:19:00] Wow. And does it take anybody special to be on site from like the CNC onsite?
You know, c NNC onsite makes these great machines that are highly accurate. Uh, Soren, do you need to have specialized people on site or are you training people that are local to do this work?
Soren Kellenberger: We are training local people. So that is, that is part of, of the whole solution that, that we do a technology transfer.
So it’s, people are trained with this specific project. We started by having the, the team in Europe, uh, so they had some, some training days with, uh, IDO and the guys in the Netherlands on the, uh, whole mounting and infusion technology. And then they came to our workshop and trained in operating the drilling machine.
Afterwards. Then for the startup, we send the technicians, uh, to, to the customer, um, who supported for a couple of weeks, and then we went back. Uh, and then we are basically, uh, always ready to support. But on teams or whatever, we can set up a link and, and [00:20:00] a system if needed. They are running with it, uh, very well.
So it’s, it’s been very limited what we’ve had to do. Uh, we get some feedback on the drilling process so we can optimize some parameters and, and step by step, uh, improve the process time. We’ve done some optimizations to the drills, uh, to make them last longer and, and do. Those, uh, things more efficiently, but they are basically running on their own
Joel Saxum: guys.
I think that’s something to make sure that we don’t breeze over here as well. Is the local content part of your solution. So you’ve done all the expert engineering, uh, figuring out the processes, of course, all the, the precision machining equipment from Soren’s team as well, but you can export it to different locales and train up the local staff and get them moving.
So places like it’s, it’s expensive. It’s difficult to get people into South Asia. It’s expensive, it’s difficult to get people into South America, to Australia, to, to anywhere really. You’re gonna export this. However, what you’re also doing is bringing local jobs, local [00:21:00] work, local revenue to the local teams.
And I know that that makes a lot of, a lot of people happy. Um, including, I know, like we’re, we’re sitting in the States, right? There’s a lot of ISPs over here, hopefully listening to this. They’re saying like, Ooh, we’d like to be the people that implement this solution over in the States. Let’s get ahold of these guys.
Uh, so kudos to you on that as well.
Edo Kuipers: Yes. The idea is indeed to have, um, on different regions in the world, uh, different, uh, repair hubs so that we can always work with the same teams, with the, with the, with the same people. So we train them, educate them, and then of course, from the Netherlands and of course from Denmark, we still, we will always support them, but it can also be done by a teams or a conference calling.
Allen Hall: And let’s talk about the Southeast Asia. Project you just completed successfully and uh, it looked fantastic. That was the first major project that you’ve tried this technology on. Besides everything in a laboratory, kind of one off things, but now you’re going to scale. This is a big step. [00:22:00] How did it go?
How did that process start? What did it look like afterwards?
Edo Kuipers: Um, how did it start? Uh, by doing it, I mean, sir and his team went on site, of course, and we encountered difficulties, of course, first time with drilling. And, um, that had multiple reasons. So the guys, uh, even the, the, the, the colleague of Sir went, went back to Denmark.
He changed, he fixed something on a drill, had sent a new type of drill and it ran perfectly. So from there, from that point, the drilling was no problem anymore. Then after we created the holes together, um, of course we have to do the infusion. And going from going from infusing like five bushings in a row, we had to go to 30 in a row.
And that was in the beginning, quite challenging. Um, to have, so it was a little bit like keep your fingers crossed if everything is going fine, but it works somehow. Um, it works [00:23:00] and, and all the resin came out. So we are quite happy with that. Uh, of course there are some fine tuning in the processing in the quality.
Uh, but that’s, that’s important for us is, is, is to keep, you need to keep following the. The quality processes. If you, if you strictly follow the quality processes, make sure it’s vacuum tight, make sure that you work in sections, so don’t open your resin folds all at the same time, one by one correctly.
And then just monitor and make sure that, of course, refresh your resin from time to time. Because that’s a pot life thing, and it takes, let’s say like maybe two hours before the whole resident is going through the bushing and also in the depth direction that is being impregnated well. Um, so you have to make sure that your pot life is under control.
And also we work with a tent, which is like 100 square meters, which is air conditioned, and, and that all contributes to a, [00:24:00] a controlled process. And yeah, that was very scary for the first time. I must admit that if you do second time. You get more relaxed. And the third time, it’s like driving a car the first time.
Oh, this, I need to pay attention to the gear. In the, in, in Europe, we have gears and, um, on the car and um, we, we need to, we need to drive and look around us and the navigation system. Um, so, and at a certain point it’s all going automatically. Right. How many blade did you repair in Southeast Asia? 18. Now we are working the, the, the sixth set.
Set number six has just completed, and I know this every week, I have contact, uh, with, with, with, with. With. With one guy there. It’s, it’s, we know each other good. So he, he gives us the feedback and it costs me every week. It costs me half an hour, not more.
Joel Saxum: It’s usually not one blade. It’s usually the whole step has an issue, correct?
Edo Kuipers: Yes and no. Um, what they do now at the moment, um, they, they, [00:25:00] they, they, they see that one, one blade has, um, uh, a problem. So they, they, they already. Start thinking ahead by taking all three blades down. So even if, if one or two blades within the set does not have the variable capping, they know in half a year it will happen.
That’s the experience they already have. And the the, there is the certain. They have a certain agreement here with the crane. The crane is coming, let’s say they use a crane every month for a fixed period. So they say, let’s hoist the complete set down. Then we have three weeks to repair, and in the fourth week we will hoist it out again.
Joel Saxum: Yeah. And the, and the technicians on site, once they’re trained up, uh, they’re loving it because whether it’s in the hot in South, south Asia, or if you’re doing this in the cold, you’re working in a tank. So if they got an extra couple blades to work on as a blade technician. I’m all for it. I’m all for it.
A little bit more time in the AC or in the heat and nice kind, controlled facility. It’s,
Soren Kellenberger: uh, I think the, the guys will like that a lot in the [00:26:00] field. One of the benefits you, you get also is, as Ido mentioned in, in the beginning, if you catch it early, you have fewer, uh. Bushings to repair. So, uh, you, if you catch it or, or repair it while you have your blades down already, you can repair fewer bushings.
And in terms of process time, it’s also a little bit faster. That’s also what we learned to, uh, to drill out the bushings when they are not. Too loose. Um, the more loose they get, the more risk you have of vibrations when you start drilling and that can potentially damage your drills. Uh, um, and it, it just adds to the process time.
So. There are a lot of benefits by catching these, uh, things early and getting the process, uh, completed at an earlier damage stage.
Allen Hall: Now you’ve completed your first big project. What’s next? It sounds like there’s a lot of opportunity worldwide to do this refit process.
Edo Kuipers: Yeah, we, the, the, the first, the first [00:27:00] team is the, is our number one team.
You can see it also here on the, on the breast. And, um, we are now looking basically a number two team, which is, is as excellent as the number one team. Um, so yeah, it’s not only that, um, we have to do, I mean. If you would like to have this, this technology implemented, um, it’s, it’s going Pfizer versa. So, um, very, very important is that we are working together with teams, service teams, which 100% trust each other.
That’s where it starts already. Um, and they are fixed. So if, if you have fixed teams, you teach them and they, they, they, they, they, they learn by experience and that that’s how it should be. Um, so yeah. The next step is, is we are talking with. Next step is we are talking with different, uh, potential, um, service companies, um, worldwide.
So we are talking within America with, with one or two, um, potential, um, good guys, good [00:28:00] groups. Um, the same in, in India, for example, and the same in, in, in South America. That’s, that’s our aim to have, let’s say in, in South America. Two service companies, uh, in, in, in India, two or three, uh, um, in India, in America, one, two, or three or whatever.
So that’s, we are now discussing with these parties, and it’s not only one direction, okay? We want to sell it to you. Now, it’s also the other direction. Are you capable? How do we want to work with 24 hour cycle? Do you have a place where we can install everything? So that’s our next step to explore.
Allen Hall: Yeah.
And Sorin, you have to start making more machines. I hope so.
Soren Kellenberger: No, it’s, it’s definitely, we’ve, we’ve seen a lot of interest and, and we’ve also had numerous contacts over the years. But again, it’s been back to this, have this been done before and. It sort of, no one wanted maybe to be the first, but now the first commercial project is, is out there.
It’s, it’s still [00:29:00] ongoing. And, and once this is completed, we will have installed more than a thousand bushings. Uh, so, so I think it’s, it’s a decent. Proof of concept. It’s a, it’s a real case. It’s not just one blade or one set. It’s, it’s actually a, a, a larger farm that, where, that we have, will have repaired once, uh, this project is, is, uh, 100% completed.
So it’s, it’s going really well. Uh, and I think that of course they will, once the potential customers see that, that this project is now open and running, it will move forward with, uh, contracts for, for other projects. But who is gonna be the first is still, uh, difficult to say, but, uh, I’m pretty sure that, that there will be more.
Edo Kuipers: Yeah. We would also quite be keen on getting on the table with the big OEMs because there are many parks which have still some kind of, uh, service contract, eh, uh, full service agreement or whatever. So even if park owners, many time [00:30:00] park owners say to us, Hey, we would like to have your technology implemented because that sounds to be the most robust one.
Um, but you need to convince the, the, the, the, the Big O oms. Um, and sometimes that is, that is, that is a difficult part because you need to go through, through these different steps with a lot of decision makers, uh, in these organizations. And that takes time. So request is, are on these big, OMS is to define clear criteria for us.
How, what should be, what should we fulfill? And if we fulfill this. Basically, do we then have a deal with each other? Because in the end, for us, we need to help those park owners because they are in the end, eh, um, they have the, they are feeling the pain on, on, on, on this kind of, um, yeah, sometimes hidden problems.
Allen Hall: Well, if you’re an OEM or an operator, where do you start this process? Who do you call first? Do you call we foresee or do you call CNC onsite or does it matter?
Soren Kellenberger: Call either of us and, uh, we [00:31:00] will be, make sure to, uh, involve the other parts. So that’s where the trust and cooperation comes into play. Uh, yeah, just reach out and, uh, we will, we will.
Set up joint meetings.
Allen Hall: The website for CNC onsite is CNC onsite.dk because they’re in Denmark. And the website for WE four C is we the number four, letter C, letter e.eu. And either one of those addresses will get you to the information you need about the refit and. Uh, get you started because as we’ve seen the United States, a lot of things are changing and worldwide.
We need to keep these turbines up and running longer. The way to do that is to put a little bit of money into them now instead of spending a whole bunch of money later. This is why we love we four C and C and C onsite because they’re saving operators, literally millions of dollars. So. You know, and Soren, thank you so much for being on the podcast.
We, we love having you. And as you finish up the Southeast Asia project, you gotta come back on after you [00:32:00] finish those thousand bushings and give us an update. Absolutely. We’ll be happy to.
Edo Kuipers: Yes, thanks a lot. We are fully happy to.
https://weatherguardwind.com/refit-blade-root-repair/
Renewable Energy
SunPower Solar Panels Review | #1 Residential Solar Panel?
Renewable Energy
New ONYX CEO, Smarter Farmland Contracts
Weather Guard Lightning Tech
New ONYX CEO, Smarter Farmland Contracts
The hosts cover some recent turbine failures, Onyx Insight’s new CEO and strategic acquisitions, research about wind turbine farmland contracts, and an article about hybrid brakes by Dellner.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
You are listening to the Uptime Wind Energy Podcast brought to you by build turbines.com. Learn, train, and be a part of the Clean Energy Revolution. Visit build turbines.com today. Now here’s your hosts, Allen Hall, Joel Saxon, Phil Totaro, and Rosemary Barnes.
Allen Hall: Welcome to the Uptime Wind Energy Podcast. I’m your host, Alan Hall in the Queen city of Charlotte, North Carolina.
Rosemary Barnes in Australia and Joel Saxon in the great state of Texas. Just before we hopped online to record this podcast, Rosemary was telling us about a number of turbine problems on LinkedIn and. Rosemary wanted to comment on them. These are some of the larger turbines. Rosemary are newer turbines.
Uh, some of them onshore, some of ’em offshore
Rosemary Barnes: for the, yeah, for the most part. Um, yeah, both onshore and offshore. Some a little bit older, but the common thread is, um, [00:01:00] just like spectacular fail failures of multiple blades of one across multiple turbines of one, the one I saw most recently. Had blades smashed to pieces.
It had towers that had just like fallen apart. Like it was, um, like they weren’t bolted together. Like it was just blocks stacked on top of each other and they had, you know, just an angry baby had just topped them over. That’s what it looked like. And um, I think what’s really interesting is reading the comments in those and it just, without fail every single time, the first few comments are gonna be.
Um, justifying how that is just cool and normal, like either by the company itself or the turbine manufacturer itself saying, oh, you know, oh, this was just a prototype. So, you know, it doesn’t matter that it fell apart, like. Forgetting about the fact that, okay, it’s just a prototype, but it’s still an operational turbine that people would’ve been inside it to install it.
They’re inside it to maintain it. You know, people are inside those things. They’re not supposed to be able to just fall apart by the time that it gets to that point.
Joel Saxum: I, I, I think I’ve seen some of these same posts, Rosemary, and one of the ones that I saw recently [00:02:00] was not even, it wasn’t new, it wasn’t prototypes.
It was, it was like, there’s a picture, there’s three turbines with, or four turbines and there of the, of the dozen blades in the picture, nine of them are gone. It’s just a nelle hub with like little stubs on three turbines, and those are only like 850 kilowatt, one megawatt, 1.5 megawatt machines. They’re, they’re old.
Rosemary Barnes: Yeah. Yeah. And so I think a typhoon went through in that particular case and I made a comment, you know, like it’s either poor turbine design or it’s really poor site assessment. In either case, it’s a failure, right? Like you don’t put wind turbines that can’t withstand a typhoon in a place that gets typhoons.
Um, but you always, you always say people saying how this is actually great engineering. And I just thought this is just the classic example of that, um, that was written under this latest post, and I’ll just read it out. The pictures point to the designers of these turbines. Having done that, designing to a certain wind speed, having done that to a high degree of consistency, I note three failure types [00:03:00] in the pictures, blade snap, tower, buckling and bolt failure, pointing to all parts, having been designed to the same survival.
Wind speed looks like they did their job well. And it’s just like, oh, what, you look at this, at this path of like it’s Godzilla has run through this wind farm, and you’re like, oh yeah, that looks like a job done. Well, well done guys. It’s just like, if we can’t learn anything as an industry from these kinds of things, then, you know, how can we expect to have a, a bright future for the industry?
Like it? It’s one thing to fail, but if you look at a failure and say, that’s actually a success that is. Just the worst possible outcome we have. We have to be able to say what went wrong, what do we do to make sure this doesn’t happen again? You have to. You have to learn, otherwise you’re going backwards.
Allen Hall: Are you worried about unexpected blade root failures and the high cost of repairs? Meet eco Pitch by Onyx Insight. The standard in blade root monitoring. Onyx state-of-the-art sensor tracks blade root movement in real [00:04:00] time, delivering continuous data to keep your wind farm running smoothly and efficiently.
With Eco Pitch, you can catch problems early, saving hundreds of thousands of dollars. Field tested on over 3000 blades. It’s proven reliability at your fingertips. Choose eco Pitch for peace of mind. Contact Onyx Insight today. To schedule your demo of Eco Pitch and Experience the future of Blade Monitoring, there’s been a series of leadership transitions that is really changing the face of the wind industry.
Onyx Insight. The Macquarie Capital Back Condition monitoring specialist who’ve had in the podcast, um, has appointed Alexis Grennan as this new chief executive officer Alexis Bringss dearly 20 years of experience from Joel. Schneider Electric where he most recently served as CEO of the digital grid division, and his expertise in smart grid software solutions and energy management systems positioned him to lead [00:05:00] Onyx Insights expansion beyond its current 28,000 wind turbines under monitoring across 35 countries.
So obviously Onyx is a big provider of CMS systems. They are the sole provider of CMS systems on GE turbines at the minute. Onyx is making a lot of moves. They just acquired 11 I recently also. So they’re, uh, what it looks like right now. They wanna be the, the leader in CMS.
Joel Saxum: Yeah, I think it’s, if you go deeper into their history a bit.
You know, the couple of CMS solutions around gearbox was really where they started then. Then they got to the eco pitch thing, and then now the blevin. And I think if you’re sitting in that boardroom, you’re thinking they want to be the center hub for IO ot, IOT being sensors out in the field. Anything that comes in, they want to be able to amalgamate it and help people out in that direction.
Um, you know, a new, a new CEO that has, uh, 20 years at Schneider [00:06:00]with digital grid. That’s awesome. Right? Good hire there. I would think. Um, I, I do see this as a trend in wind. You’re seeing some more CEOs and senior leadership coming into organizations from outside of wind directly. Some of the bigger capital holders, you know, the Goldmans of the world and the Macquarie’s and that kind of things, if they have portfolio companies, you’re seeing people be placed in leadership roles that are coming from outside of wind and bringing expertise from, of course, usually energy, software, supply chain, these kind of things that we need, but some fresh blood at the leadership level.
I like to see that.
Allen Hall: Well, the addition of the grid coming into Onyx, is that an expansion plan? Because there is a lot of work going on expanding the grid and monitoring the grid and making the grid carry more energy than what it was originally designed for. And I’ve listened to a number of podcasts over the last month that talks specifically to it.
It, it is a definite growth area. [00:07:00] You think this could indicate a move into other areas besides just the basic wind? CMS. Solutions.
Joel Saxum: Well, let’s think about it this way. So in wind, when you have wind specific companies, you’re starting to see intenders or you have been seen intenders for the last few years, even just the most basics inspections.
Okay? We’re inspecting blades. Use your RFP. Now those blades say, and blades plus BOP. So we want you to do the transmission lines. And then you’re seeing some of ’em that are BOP plus substations. So all the sub, all the way back to the edge of the wind farm where connects to the grid. Um, so companies are adjusting, like you’ve seen Skys specs adjust to that.
You, you know, whether it’s partnerships or expanding things internally and other companies as well, even down to the ISPs starting to do more and more and more because they’re being asked to. This makes sense because, uh, at the end of the day, if you’re working for a subset of customers, there’s only so much budget in.
Of turbine work and if you wanna expand your company and grow, you need to expand in other [00:08:00] areas. So why not just keep it going down the line of connection to the grid, inter, inter wind farm issues, those kind of things out of the wind farm. So I, I don’t know if that’s ON’S plan, but I can see that. I think that from a strategic standpoint, it makes sense.
Allen Hall: Well, as Schneider is involved in all kinds of aspects of the grid worldwide, so I would assume bringing in a new CEO would open up maybe some horizons to Onyx and maybe there’s adjacent businesses that they should be in because they have a lot of technology and they’re pretty smart group. They may want to expand outwin just a tiny bit just to, to test the waters, see what they could do there.
Well, going to solar seems like an obvious choice, but there could be other areas that they may want to look at, at least in the short term to see if they can add value.
Joel Saxum: Yeah. Grid infrastructure. Right. I think that that’s a, we talk about it regularly that our, our entire global grid is aging quickly. It’s aging fast, and with the changes coming [00:09:00] on board with.
You know, different generation types, all the batter, different types of battery storage, and you know, like our, our conversations with Joe Chicon over at Podge about, uh, frequencies on the grid and all these different changes and load changing and AI data centers coming up and on and off and on. Um, it’s really highlighting the need for a future digital grid, uh, and upgrades to it.
So Onyx is probably, you know, in the wind world that we see, they’re probably sitting pretty. In a pretty good spot as compared to most companies to be able to engage in that and bringing on someone from the digital grid side of Schneider. Smart move in my my opinion, I dunno. Rosie, what are your, what are your thoughts on that
Rosemary Barnes: in general?
I think it’s really good to move people around to similar industries or a little bit different, different roles. Uh, I think that that’s a, um, a real way to drive innovation forward by bringing in different perspectives. I know that I. I found myself appearing more innovative when I lived in Denmark. You know, just purely [00:10:00] because I had seen and experienced and done things in a different, a different way, solved similar problems in a different way.
Um, just, just through what I, you know, the kinds of engineers I worked with earlier in my career. It was different to the way that a lot of Danish people had been taught to approach problems. And it just, you know, when you bring in a few slightly different people, it really expands the um. Amount of options that you have on the table for solving new problems as they come up.
And all of these kinds of industries are doing stuff that hasn’t been done before, right? So I think you do want to have as many different options that you, as you can come up with to, um, end up with the good solutions and you’ll get more options if you don’t choose people that are all from the exact same background.
So I think in general, that, um, it’s always good to, to shake things up
Allen Hall: in this quarter’s PES Win magazine, there’s a lot of great articles that you. Need to read. And the way to do that is go to PS wind.com and download your free edition. [00:11:00] And we wanna talk about an article in the magazine this quarter, Joel, which is Hybrid Breaks Ya Breaks.
Why you would use ’em, why they’re, this is a little bit different than what we typically see on like a GE machine. Uh, Siemens GAA uses these quite a bit, which are sort of a passive and an active, so they’re a break. So there’s a hydraulic cylinders and there’s some active pads that close, but there’s also some static pads and they’re using slip rings instead of a, a bearing surface to rotate the jaw.
So if, if that makes sense. You to do an active system, uh, you can really put stress on your, on your ball bearings and probably flatten them over time if you keep squeezing enough. With this system, it’s a little more control, a little more precise. So you’re, I, I think the, the argument they’re making is that it, uh, simplifies the system, so there’s some complexities to it, but overall.
It costs less, [00:12:00] and that’s what we should be doing in engineering, right? Trying to figure out ways that maybe just cost a bit more for a component, but less overall.
Joel Saxum: Is it a direct retrofit? Like is this a, Hey, we’ve, we’ve had, we’ve had a component fail, so we want to put a new system in. Or is it like aix, swap it out now as a CapEx cost?
Or is it like during Repower, when are they putting this on?
Allen Hall: It’s from Donor Wind Solutions, uh, and they’re doing, doing it as part of OEM work, right? It, it does take a little bit of finite element analysis because of the way it loads up the, the yaw system. So you want to make sure that it doesn’t overload it if you’re gonna use it, but it’s one of those things in wind like, uh.
Try to choose a simpler system on a smaller turbine. As you get larger and larger, your approach probably changes. And this is what Ner is pointing out.
Joel Saxum: I’ve noticed that actually, if you’re, if you’ve frequented any wind conferences, technology shows, exhibitions, you will know where NER is because everything on their booth is lime green.[00:13:00]
Um, I love that. I think it’s a great approach, uh, which everybody knows. It’s, it’s like seeing the Dema, the Dema ships or the SVA ships in a port. You’re like, you know what? That one is right away. Uh, but del nor, but that’s what Nert does, right? They, they are. They have parts that are direct replacements.
Great. This is the part we’ve made it a little bit better, but it’s a direct replacement. But they also are re-engineering things, making them better, uh, for the long haul, uh, from a operations standpoint. ’cause I’ve seen some of their pitch, they have different kind of pitch systems and stuff as well that they are, are retrofits for, for, uh, specific machines that have trouble with them.
Um, but yeah, uh, this one to me, I’m not an expert on jaw brakes. Of course, that’s not my thing. Uh, but I do know that whenever you have to deal with that YA system, whether it be the gearing, the brakes, or the, you know, like the, the pucks and the GE go bad all the time. Like it’s an undertaking, uh, down to the point where people have developed UPT tower machining processes to fix, uh, issues with the YA system and whatnot.
So, um, if they’re, if, if someone is putting this [00:14:00] much engineering effort into fixing a problem, it’s definitely a problem.
Allen Hall: Yeah. Even think about the problem though, you have so much weight. Up into the cell and you’re trying to pivot all the time, and the wind is trying to move into the cell whether you want it to or not.
The YA system kind of takes all the abuse. So designing a system to last is really the key here. Without breaking things, I mean how many turbines have we seen where the YA gear teeth have been damaged or broken off? Because the brake system is not really de-stressing those teeth. It matters a lot. So as we get more and more efficient with wind turbines, we gonna be thinking about all the different components that go into a wind turbine and making them more efficient, making ’em last longer, making them cost less.
So if you haven’t downloaded the latest PES wind. Magazine do it. You can read this article from Donor. Just visit PS wind.com. As Wind Energy Professionals, staying informed is crucial, and let’s face it difficult. That’s why the Uptime [00:15:00] podcast recommends PES Wind Magazine. PES Wind offers a diverse range of in-depth articles and expert insights that dive into the most pressing issues facing our energy future.
Whether you’re an industry veteran or new. Wind, PES Wind has the high quality content you need. Don’t miss out. Visit PES wind.com today. Well in the US when a wind company wants to put some turbines on your farm, uh, the operator just talks to the, each farmer individually and negotiates a deal. Now a lot of those deals are very similar, but you may find from neighbor to neighbors, slight differences and farmers are getting.
Smarter over time. Clearly. Uh, a professor or assistant professor up at Purdue University in Purdue is in Indiana, kind of central part of the United States, explains that landowners can be paid up to $10,000 per acre annually [00:16:00]to lease to wind energy companies. And that’s a great amount of money. We’ll take that, but, and the turbines only occupy maybe one to three acres, and so you can continue to farm your several hundred acre parcel.
Uh, but. This professor notes that the farmers are starting to consider other factors than just the money, including the visual impact community relationships, which is the big one I think lately. And political beliefs about renewable energy, which jolt talks about all the time in Wisconsin. Uh. The advice from the professor is have an attorney to review the lease and to make sure that the wind operator is going to restore the land to its original condition once they stop using the turbines.
And I think that makes a ton of sense. So you’re seeing a slight shift in the way that landowners are coming to agreement with some of the operators. It is about the money, a large part of it, but they’re also trying to navigate the neighborhood situation where they don’t make their neighbors upset. You can imagine a lot of them have been there for generations and they don’t [00:17:00] want to really make the neighbors mad at ’em.
Uh, so you’re seeing a lot different types of leases coming about now than maybe you saw five years ago even. And that has evolved, uh, quite a bit. But the money is still good. I think most people, at least in the United States, most farmers will. Like to have that additional revenue. It just makes the farm much more profitable over time.
But that same situation doesn’t exist worldwide. And Rosie, are you seeing something different in Australia? It does seem like there’s a little more spreading of the wealth in, in terms of revenue.
Rosemary Barnes: I actually listened to a good podcast episode on this recently. Uh, it was the switched on, not the Bloomberg switched on, but the renew economy switched on.
Um, and they interviewed a now retired farmer who had, had one of the very early wind farms, um, in Australia, put on his farm. And I mean, his story was o overall very positive. It it, the [00:18:00] time when they started talking about it was during a very severe and prolonged drought in Australia and he had actually been trying to sell off land, um, just to keep the.
You know, keep the lights on, um, and was unable to sell. Like just there’s no buyers at any price at that time. And then, so the wind farm came and he, he also mentioned how important it’s to get, um, lawyers, good lawyers advising on the contract because he mentioned that he was getting paid every year before construction as well.
And that it ended up taking 10 or 14 years, I can’t remember the exact amount of time, but a long time. Between starting to talk about it and actually having the wind farm built. And if he hadn’t have had that, he said he wouldn’t have been able to make it. So, um, that was one thing. But yeah, so and so overall it was very positive for him.
He was eventually able to sell his farm and, and retire, um, nicely with a profitable farm. He also mentioned that he was able to do a lot of upgrades on the farm with the money, the revenue that was coming from the wind turbines. So when we went to sell, it had all new fences and, you know, stuff like that [00:19:00] that made it very attractive and easy to sell.
Um, but he also mentioned a few things that were just really bad, and he sounded really angry in that episode, um, where, uh, he, he said at that time it was like the wind developer knew everything and the farmers knew nothing, and they tried to keep it that way. Like he had a brother on a neighboring property was also in discussions about wind turbines, and they were forbidden from talking to each other.
I think that that’s a lesson that’s been learned over the last 10, 20 years in Australia, is that. It’s really worth it to put a bit of effort upfront in, um, listening to what people’s concerns are and then doing something about it. Uh, I think there’s been so much emphasis on like listening and talking and listening.
That’s not the important part. The important part is then understanding what the issues are and then, um, you know, removing those, those barriers. And, you know, money is a big part of that.
Joel Saxum: I spent. A eight plus years dealing with these issues in the field with landowners on, on oil and gas [00:20:00] projects, right?
So there’s stages of oil and gas projects from exploration to production and all these different things, and they, and everybody gets different lease payments and, and access payments along the way. And, and if you, you know, if someone has locked up your land in the seventies, you may only be getting five bucks.
And if someone has this, they’re getting more. It’s, and it, what ended up happening is, is. You need to, you need to, and we’re in the, we’re in the same space of wind because those same people, those same professionals, landmen and permit agents and stuff that worked in oil and gas work in wind and solar as well.
It’s the same companies. It’s the same ideas.
Allen Hall: Yeah. Same groups.
Joel Saxum: Yeah, same groups. Um, they, they need to distinguish and make sure they’re taking care of participating landowners and non-participating landowners. And the non-participating landowners, just like we’re talking about here, they’re just as important as the participating ones because they’re the ones you’re gonna piss off.
Uh, so, so you’re starting to see some payments going directly to them as well. Like if you’re within X amount of feet of a turbine, even if you’re not on your land, you are starting to get a little bit of a payment [00:21:00] in some areas, in some spots. Um, but one thing I wanna flag is, at the beginning of this, we talked about a lawyer, bringing a lawyer in and having them look at certain things.
I would say this and maybe the wind industry developers are gonna hate me for this. But there’s a legal, legal concentration called, um, a, a favored Nations clause or a most favored Nations clause. If you are a part of anything of this sort, make sure any, any signing, any contract for wind, uh, non-participating.
Participating. Make sure you have a clause like this in your contract because it will basically State wind Farm goes in a hundred turbines. If they’re offering you five bucks an acre and they’re offering your neighbor a thousand, you get a thousand too. It makes, it makes everybody equal in the playing field.
It doesn’t give anybody, uh, you know, better terms and conditions. Once one person gets a term and condition, that’s good, everybody gets it. That has that most favored nations clause in their contract. So have a lawyer institute that if you’re gonna be a part of one of these.
Allen Hall: Yeah. The other thing that was pointed out in the [00:22:00] article was, uh, a lack of increasing payments adjusted to inflation.
So some of the farmers are pushing back because inflation is relatively high. So if you got $10,000. Per acre per year in 2035, he may want to see something more like $15,000 per acre per year because of inflation. That to me makes a lot of sense, but I know a lot of leases don’t work like that. They’re just.
Fixed price. It’s today’s price and it stays that way until the end of the lease. It’s just simpler to do. There’s a lot less math to do. But Joel, as you see more, uh, farmers getting advice, taking advice, do you see this evolving into a more of a standard contract where they. Do have the favored nation.
They do have inflationary increases based on cost of living or some federal standard so that you’re, instead of having to negotiate every contract completely separate, you’re getting [00:23:00] something a little more universal, including helping the neighbors.
Joel Saxum: Yeah. The tough thing there is that a lot of wind.
Okay, so we’re like, I’m just gonna pick the United States example. You’re in different states, you’re in different counties, you’re in different areas, right? So if you go to Minnesota and you talk to someone in Minnesota about their mineral rights, they more than likely don’t know what you’re talking about.
Yeah, because that’s not a thing up there for most of Minnesota. Some of Minnesota is right, the Iron Range and whatnot, but if you talk to someone in Texas about mineral rights, that’s just as important or of more important than their actual real property surface rights. So they know and, and they have to build contracts around certain things the same way oil and gas contracts were like at oil and gas contracts at, you know, early days were easy.
It was X amount per acre. That’s it. Uh, now you have people buying strata and leasing strata out of, uh, subsurface things, and you have. Payments tied to payments tied to production, right? And I haven’t seen a whole lot of wind payments tied to production. I don’t know if that exists or solar, um, [00:24:00]that that can be a, you know, a shared upside or shared downside type thing.
Um, if someone’s gonna pay me $15,000 an acre, I’m just taking the cash. I don’t care what your production is ’cause that’s a great rate. So, so, um, you, you know, I think that. Using these organizations that have been doing this for a long time, that is a smart way to go if you’re an operator, uh, that know how to navigate the town halls and that know how to do these things professionally because there is actually just like you have to have a real estate license.
There is a professional landman license, uh, of, to do this kind of stuff. Uh, so there’s schooling, there’s certifications, all this. Again, I’m just talking in the United States here. Um, but, uh, I don’t know if I see a across the board. Federal type contract. ’cause it’s just too many municipalities, too much, too much going on.
Allen Hall: Well, we’ve been looking at a lot of wind farms the last couple of months on the lightning side and realizing, you know, how [00:25:00] dedicated the wind farm installations are to putting ’em on ridge lines, even if it’s a, a. A hundred feet higher. So that tends to spread out the wind farms. Unlike in some parts of Kansas where there isn’t a lot of variation in the, uh, in the surface in other places.
We’re just looking at Oklahoma, uh, where the turbines are specifically falling ridge lines. So you’re gonna end up crossing a lot of property lines when you do that, I assume. And you and I have been on a number of sites where. We’re going from one turbine to another and we’re crossing three or four different property owners and not that far of a distance.
Fences and gates. Right? The fences and gates. Bet. So even if you don’t have a turbine on your property, you may have a road on your property. And the how they navigate that. So if, if, if, if whoever’s. Taking on those contracts and negotiating on those contracts has a load of work to do. It’s going to be,
Joel Saxum: and like I like, I think I go back a little bit like it’s gonna be dependent on where you are, because a contract in Kansas is gonna look a lot different than a contract in Wyoming versus a contract in Texas just simply [00:26:00] because of local laws, access rights, these kind of things.
I’d say, I mean, however, one of the, that’s one of the things that’s cool to touch on is some of these farmers and ranchers, like when I was in oil and gas stations in Wyoming, they loved when the exploration crews came ’cause they would get money for roads. And they’d be like, oh, these old two tracks. Make that into a road that can take an 18 wheeler down then, then you can have access.
And they’re happy, happier than hell. This week’s Wind Farm of the Week is the Alta Complex owned by TerraGen out in California. So at one point in time, of course if you’re a part of wind lore in the United States. You know that this was the biggest wind farm in the United States at 1,550 megawatts. It was also the third largest onshore project worldwide.
Now there’s been a couple of the Sun Zia projects and stuff have been a bit bigger, but this thing is massive. Uh, spreads across about 9,000 acres and holds, hosts almost 600 turbine. Uh, so it started in 2010. Multiple phases of construction, uh, ended in 2014 and financed with almost $3 billion. [00:27:00]Uh, and it’s in that Tehachapi Pass area.
So, uh, it has, it actually still does have some capacity for expansion. Uh, but we wanted to share this one because, uh, just the size and scale of this thing, uh, being that it’s so big, uh, and as well. Long-term power purchase agreement signed with Southern California Edison. Uh, the output averages enough power to, to power about 450,000 homes annually, uh, which is just massive.
Uh, it’s created over 3000 jobs. And I think this one, the economic story might be the, the, the, the feather in the cap, uh, is it in his injects over $1 billion into the regional economy, which is just massive. So, uh, kudos to the wind industry for making this one happen. Uh, but looking ahead, uh, it is a bigger part of that Tehachapi wind resource area when it has the expan or has expansion potential of up to 10 gigawatts.
Uh, as California continues to grow out, its renewable grid. So this week’s wind farm, the Ulta Wind [00:28:00] Complex, so owned by TerraGen out there in California, the Wind Farm of the week.
Allen Hall: That wraps up another episode of the Uptime Wind Energy Podcast. Thanks for joining us. We appreciate all the feedback and support we receive.
From the wind industry. If today’s discussion sparked any questions or ideas, we’d love to hear from you. Just reach out to us on LinkedIn, particularly Rosemary, and please don’t forget to subscribe so you never miss an episode. So for Joel Rosemary, I’m Alan Hall. And we will catch you next week on the Uptime Wind Energy Podcast.
https://weatherguardwind.com/onyx-ceo-turbine-failures/
Renewable Energy
States Calculate Onshore Wind Opportunities
Weather Guard Lightning Tech
States Calculate Onshore Wind Opportunities
In September, when some farmers and homeowners in St. Joseph County in north-central Indiana received letters from German-based UKA Group about the company’s interest in developing a new wind farm, it wasn’t necessarily welcome news. A handful of the letter recipients took to social media to state their opposition. But for the western edge of neighboring state Ohio, wind has provided a significant economic boost for small communities.
Sparsely-populated Paulding County Ohio is home to fewer than 19,000 residents, three utility-scale wind farms, and one-and-a-half solar farms.
Each year from 2015-2020, the county saw roughly $2.5 million in “pilot payments,” pre-tax investments the county negotiated to be paid prior to the project’s completion. (More money was to be paid out once all of the turbines came online.) In 2020, Jerry Zielke, then Paulding County’s economic development director, told Ohio reporter Rod Hissong the new wind farm has been “a really really great opportunity for us and our community financially and it really has helped our economy here in Paulding County.”
Local media chronicled the process, explaining how the money generated was spent, invested, and shared in a variety of ways – including $120,000 in annual scholarships for local students.
Wayne Trace schools were an obvious beneficiary. According to the Spectrum article, “Wayne Trace Superintendent Ben Winans said since the school started receiving wind farm money in 2013 they’ve hired 18 new teachers. ” Winans also noted that the GAP closing – getting lower-performing students to achieve at higher levels – “improved from an ‘f’ to an ‘A,’ ” he told SpectrumOne.
Since then, Paulding County’s new economic development director, Tim Copsey, has increased the county’s income by negotiating to bring two solar farms to the area. Timber Road Solar Farm has been supplying local farmers with a “drought resistant form of income” since it came online in 2023.

Image credit: EDP and Timber Road Solar Farm (Ohio map) and Google Maps (Indiana map inset, below)
Will Indiana WElcome a New Wind Farm?

It may be an uphill battle for the UKA wind farm.
St. Joseph County recently enacted an ordinance to deter solar power generation in the county. But, the state already generates 3,368 MW – more than three times what Ohio’s wind farms generate – and another 302 MW are under construction, according to the US DOE and American Clean Power.
And it’s not a new development – according to the Indiana Office of Energy Development, wind energy has been part of the state’s fuel mix since 2006.
In Illinois, Indiana’s neighbor to the west, 7665 MW, or about 12% of the state’s energy, is derived from wind.
Will Indiana continue to do as other states do – including its neighbors, and other farming states like Iowa, and even oil-rich Texas – and sell wind power to fuel income for their state and county budgets? Time will tell, and we’ll be watching as things develop.
You also might be interested in: New Jersey’s Electricity Rate Crisis is a Perfect Storm for Wind Energy
For regular updates on wind and other renewable development projects, technologies, and news, subscribe to the Uptime Tech News newsletter and tune in to the Uptime Wind Energy Podcast.
https://weatherguardwind.com/states-calculate-onshore-wind-opportunities/
-
Climate Change2 years ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change2 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Climate Change Videos2 years ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Greenhouse Gases1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Greenhouse Gases2 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Carbon Footprint2 years ago
US SEC’s Climate Disclosure Rules Spur Renewed Interest in Carbon Credits
-
Renewable Energy3 months ago
US Grid Strain, Possible Allete Sale