Connect with us

Published

on

Over the weekend the Washington Spectator published my essay, Diary of a Transit Miracle, recounting the arduous march of NYC congestion pricing from a gleam in a trio of prominent New Yorkers’ eyes at the end of the 1960s, to the verge of startup at the upcoming stroke of midnight June 30, the startup time announced by the MTA last Friday.

Landing page for this post’s original version.

I’m cross-posting it here — the third post on the subject in this space in the past 12 months (following this in December and this post last June) — because the advent of congestion pricing in the U.S. is “a really big deal,” as a number of friends and colleagues have told me in recent weeks. As my new essay makes clear, charging motorists to drive into the heart of Manhattan isn’t just a rejection of unconstrained motordom, it’s a new beachhead in “externality pricing” — social-cost surcharging — of which carbon taxes are the ultimate form.

The essay features two governors, two mayors — one of whom I served a half-century ago as a lowly but admiring data cruncher — a civic “Walter Cronkite,” a Nobel economist, raucous transit activists, a gridlock guru and yours truly, plus a cameo appearance by Robert Moses. It includes footage of the historic 1969 press conference in which Mayor John Lindsay and two distinguished associates enunciated the core idea of using externality pricing to better balance automobiles and mass transit that animated the arduous but ultimately triumphant congestion pricing campaign.

  — C.K., April 29, 2024

Diary of a Transit Miracle

A miracle is coming to New York City. Beginning on July 1, and barring a last-minute hitch, motorists will soon pay a hefty $15 to enter the southern half of Manhattan — the area bounded by the Hudson River, the East River and 60th Street.

An anticipated 15 percent or so of drivers will switch to transit, unsnarling roads within the “congestion zone” and routes leading to it. The other 80 or 90 percent will grumble but continue driving. That is by design. The toll bounty, a billion dollars a year, will finance subway enhancements like station elevators and digital signals that will increase train throughput and lure more car trips onto trains.

The result will be faster, smoother commutes, especially for car drivers and taxicab and Uber passengers, who will pay a modest surcharge of $1.25 to $2.50 per trip. Drivers of for-hire vehicles will benefit as well, as lesser gridlock leads to more fares.1

The miracle is three-fold: Winners will vastly outnumber losers; New York will be made healthier, calmer and more prosperous; and that this salutary measure is happening at all, after a half-century of setbacks.

Obstacles to congestion pricing

Congestion pricing, as the policy is known, faced formidable obstacles even beyond the difficulty inherent in asking a group of people to start forking over a billion dollars a year for something that’s always been free.

Congestion pricing also had to contend with: an ingrained pro-motoring ideology that casts any restraint on driving as a betrayal of the American Dream; a general aversion to social-cost surcharges (what economists call “externality pricing”); exasperation over the region’s balkanized and convoluted toll and transit regimes; and, of late, a decline in social solidarity and appeals to the common good.

The advent of congestion pricing in New York is, thus, cause not just for celebration but wonderment. How did this wonky yet radical idea advance to the verge of enactment?

Origins

The trail begins in the waning days of 1969, when newly re-elected mayor John Lindsay recruited two well-regarded New Yorkers to devise a plan to fend off a 50 percent rise in subway and bus fares.

William Vickrey, a Canadian transplant teaching at Columbia and a future Nobel economics laureate, was a protean theorist of externality pricing. New York-bred mediator Theodore Kheel was admired as a civic Walter Cronkite for his plain-spoken common sense.

Lindsay, too often dismissed as a lightweight, understood mass transit as key to loosening automobiles’ spreading chokehold over the city. He had made combating air pollution a pillar of his first term and was fast becoming an exemplar of urban environmentalism. From his municipal engineers, Lindsay knew that technology to clean up tailpipes still lay in the future. A transit fare hike that would add yet more vehicles to city streets imperiled his clean-air agenda.

The triumvirate proposed a suite of motorist fees to preserve the fare. Their program ― higher registration fees and gasoline taxes, a parking garage tax, doubled tolls ― though mild in today’s terms, threatened powerful bureaucracies and their auto allies. Newly dethroned “master-builder” Robert Moses opined that Kheel, in his zeal to save the fare, had “gone berserk over bridge and tunnel tolls.”2 The program went nowhere.

L to R: Kheel, Lindsay, Vickrey. Click arrow to view (please excuse two brief garbled passages toward end).

Moses was right to be alarmed. From a City Hall podium on Dec. 16, 1969, Mayor Lindsay showcased Kheel’s and Vickrey’s respective reports, “A Balanced System of Transportation is a Must” and “A Transit Fare Increase is Costly Revenue.” (Click link in still photo above to view 27-minute video.) The trio propounded a new urban doctrine rebalancing automobiles and public transportation: “Automobiles are strangling our cities… Starving mass transit imposes costs that are difficult to measure, yet real… Correcting the fiscal imbalance between transit and the automobile is key to enhancing our environment and quality of life…”

Their remarks set generations of urbanists on course toward congestion pricing.

Setbacks

Quantifying those precepts became my research agenda 40 years later. In the interim, two creditable attempts to enact congestion pricing crashed and burned.

The central element of Lindsay’s 1973 “transportation control plan” was tolls on the city’s East River bridges, a measure designed to eliminate enough traffic to satisfy federal clean-air standards. Though the plan’s formal demise didn’t come until 1977, in legislation written by liberal lawmakers from Brooklyn and Queens, the toll idea never stood a chance. Electronic tolling was 20 years away, and adding stop-and-go toll booths seemed more likely to compound vehicular exhaust than to cut it.

Three decades later, in 2007, Mayor Michael Bloomberg asked Albany to toll not just the same East River bridges but also the more-trafficked 60th Street “portal” to mid-Manhattan. Predictably, faux-populist legislators saw Bloomberg’s billionaire wealth as an invitation to denounce the congestion fee as an affront to the little guy.

The mayor may have hurt his cause by presenting congestion pricing primarily as a climate and pollution measure. The pollution rationale was no longer compelling in the way it had been in Lindsay’s day, as automotive engineers had slashed rates of toxic vehicle exhaust ten-fold. Appeals tied to global warming also fell flat; remember, congestion pricing contemplated that most drivers would stay in their fossil-fuel burning cars.

This isn’t to say that congestion pricing confers no climate benefits. Rather, the benefits are subtler ones that can be hard to convey to voters, such as making climate-friendly urban living more attractive. A further benefit may come as congestion pricing demonstrates the unique power of externality pricing, as explained below.

From the Rubble

Even as Bloomberg’s toll plan was faltering in Albany, new loci of support were germinating in the city.

Changing times demanded not just the intellectual leadership of think-tanks like the Regional Plan Association and the good-government Straphangers Campaign, but gritty, grassroots transit organizing. Enter the newly-minted Riders Alliance.

2017 subway handbill exemplified new militancy targeting Gov. Andrew Cuomo for failing transit.

As subway service began cratering in 2015, the inevitable result of budget-raiding by a skein of governors, the Alliance posted crowd-sourced photos of stalled trains and jammed platforms alongside demands for improved service from “#CuomosMTA.” Before long, the papers were pointing the finger at the governor not just in “Why Your Commute Is Bad” explainers but in tear-jerkers like the Times’ May 2017 classic, “Money Out of Your Pocket”: New Yorkers Tell of Subway Delay Woes.

The drumbeat was deafening. Cuomo finally blinked. On a Sunday in August 2017, he phoned the Times’ Albany bureau chief and handed him a scoop for the next day’s front page: Cuomo Calls Manhattan Traffic Plan an Idea ‘Whose Time Has Come’.

The “traffic plan” was congestion pricing.

Data Cruncher

Two months later, Cuomo’s staff summoned me to the midtown office of the consulting firm they had retained to “scope” congestion pricing ― essentially, to compute how much revenue tolls could generate. They wanted to see if an Excel spreadsheet model I had constructed and refined over the prior decade could aid their scoping process.

The model was called the Balanced Transportation Analyzer, a name bestowed in 2007 by Ted Kheel.

Ted, in his nineties, had recruited me to determine whether a large enough congestion toll could pay to make city transit free. The idea worked on paper but foundered politically. Nevertheless, Ted saw in my Excel modeling a way to capture phenomena like “rebound effects” (motorists driving more as road space frees up) and “mode switching” between cars, trains, buses and taxicabs, that he and Prof. Vickrey had identified in their 1969 work but lacked the computing ability to quantify.

Ted’s philanthropy enabled me over the next decade to expand, test and update my transportation modeling. With a hundred “tabs” and 160,000 equations, the “BTA” can instantly answer almost any conceivable question about New York congestion pricing, as well as these two central ones: how much revenue it will yield, and how much time will travelers save in lightened traffic and better transit.3

The BTA model aced its 2017 audition and became the computational engine for the congestion pricing legislation the governor’s team enacted into law in 2019. Its impact has been even broader.4 “Having the model helped make the case with the public, journalists, elected officials and others,” Eric McClure, director of the livable-streets advocacy group StreetsPAC, wrote recently, in part by helping congestion pricing proponents push back on opponents’ exaggerated claims of disastrous outcomes and their incessant demands for special treatment. The model may also have influenced the detailed toll design adopted by the MTA board earlier this year, which hewed close to the toll design I had recommended last summer.5

The BTA also provided sustenance during congestion pricing’s seven lean years ― the 2009-2016 period in which the torch was kept lit by a new triumvirate known as “Move NY” ― traffic guru “Gridlock” Sam Schwartz, the very able campaign strategist Alex Matthiessen, and myself. The model helped our team evangelize congestion pricing’s transformative benefits to elected officials and the public. This, I believe, was a key element in mustering the critical mass of support that ultimately swayed not one but two governors.

The Hochul Factor

New York Lieutenant Governor Kathy Hochul’s ascension to governor in August 2021 could have been congestion pricing’s death knell. The toll plan was adrift in the federal bureaucracy, and its latter-day champion Andrew Cuomo had exited in “me-too” disgrace. His successor, from distant Buffalo, wasn’t beholden to New York or congestion pricing.

Hochul, who as governor controls city and regional transit, could have disowned congestion pricing as convoluted, bureaucratic and tainted. Instead, she became a resolute and enthusiastic backer. Her spirited support, both in public and behind the scenes, became the decisive ingredient in shepherding congestion pricing to safety.

Why the new governor went all-in on congestion pricing awaits a future journalist or historian. Had she spurned it, the opprobrium from downstate transit advocates would have been intense; but there doubtless would have been cries of “good riddance” as well. Vickrey, Kheel and Riders Alliance notwithstanding, it’s not clear how closely New Yorkers — including transit users — connect congestion tolls to improved travel and a better city.

What makes Hochul’s embrace especially impressive is that congestion pricing is, in a real sense, an attack on a jealously guarded entitlement: the right to inconvenience others by usurping public space for one’s vehicle. The classic lament about entitlements’ iron grip is that “losers cry louder than winners sing.”6 Yet in this case, it seems, potential losers — actual and aspiring zone-bound drivers — are being out-sung by transit interests seeking, in Kheel’s 1969 words, a better balance between public transportation and automobiles.

Credits and Prospects

Let us now praise Andrew Cuomo’s crafting of the legislation that teed up congestion pricing’s successful run.

Rather than specifying a dollar price for the tolls, or a precise traffic reduction, his 2019 bill established a revenue target: sufficient earnings to bond $15 billion in transit investment — which equates to $1 billion a year to cover debt service. This device trained the public’s focus on the gain from congestion pricing (better transit) instead of the pain (the toll). Equally important, with this deft stroke, any toll exemption that a vocal minority might seek would mathematically trigger higher tolls for everyone else. The effect was vastly heightened scrutiny of requests for carve-outs.

Which cities will follow on New York’s heels? No U.S. urban area comes close to our trifecta of gridlock, transit and wealth. Sprawling Los Angeles or Houston, or even Chicago for that matter, might be better served by more granulated traffic tolls than New York’s all-or-none model.

Perhaps Asia’s megalopolises will be swept up in our wake. In the meantime, my focus will be on the holy grail of externality pricing: taxing carbon emissions. Every economist knows that the surest and fastest way to cut down on a “bad” is by taxing it rather than subsidizing possible alternatives. Yet that approach remains counter-intuitive and even anathema to nearly everyone else.

A huge and important legacy that New York congestion pricing could provide is to prove that intelligently taxing societal harms need not be electoral suicide. This proof could help unlock a treasure-trove of prosperity-enhancing pricing reforms including, most prominently, robust carbon taxing.

The author, a policy analyst based in New York City, worked in Mayor Lindsay’s Environmental Protection Administration in 1972-1974. He met Bill Vickrey in 1991 and worked closely with Ted Kheel from 2007 to 2010.

Endnotes

  1. The new passenger surcharges of $1.25 for taxicabs and $2.50 for “ride-hails” (principally Ubers) apply to trips touching the congestion zone. These will be partially offset by lower fares owing to shorter wait-time charges due to faster travel speeds.
  2. Quote is from Moses’ August 23, 1969 guest essay in Newsday, “Is Rubber to Pay for Rails?” (not digitally available).
  3. The current version of the BTA is publicly available at this link: (18 MB Excel file).
  4. See Fix NYC Advisory Panel Report, Appendix B, 2019.
  5. A Congestion Toll New York Can Live With, July 2023, by Charles Komanoff, co-authored with Columbia Business School economist Gernot Wagner.
  6. As pronounced by University of Michigan economist Joel Slemrod, in Goodbye, My Sweet DeductionNew York Times, by Eduardo Porter and David Leonhardt, Nov. 3, 2005.

Carbon Footprint

Google Invests in First Carbon Capture to Power AI and Cut Emissions

Published

on

Google Invests in First Carbon Capture to Power AI and Cut Emissions

Google announced a major new project: it will support a U.S. power plant outfitted with carbon-capture and storage (CCS) technology. The plant, owned by Broadwing Energy in Decatur, Illinois, will capture about 90% of its CO₂ emissions. The tech giant agreed to buy most of the electricity the plant produces.  

By backing this plant, Google aims to help build a reliable, low-carbon power source for its data centers in the U.S. Midwest. It also hopes to speed up the use of CCS technology globally.

The Science of Trapping Carbon: How CCS Works

CCS stands for carbon capture and storage. It involves three main steps:

  • Capture: Pulling CO₂ from a power plant or factory.
  • Transport: Moving the CO₂, often via pipelines.
  • Store: Injecting the CO₂ deep underground where it can’t escape.

This technology is especially important for power plants that burn natural gas or coal. It is also key for factories in heavy industries, like steel and cement, which produce large emissions.

Global experts such as the International Energy Agency (IEA) and the Intergovernmental Panel on Climate Change (IPCC) say CCS will play a major role in reaching climate goals.

CCS operational and planned capacity IEA
Source: IEA

Google’s deal highlights this role. By linking a power plant deal to its own data center needs, the company is showing how big tech can strengthen the clean energy transition.

Inside Google’s Illinois CCS Project

The Illinois plant will be a natural 5gas power facility built by Broadwing Energy. It will capture up to 90% of the CO₂ it produces. Google will buy the bulk of its electricity output.

The plant is sized at more than 400 megawatts (MW). It will include advanced equipment and a large carbon-capture unit. The deal was announced by Google and infrastructure partner I Squared Capital (through its affiliate Low Carbon Infrastructure).

Google said the project will feed power to its data centers in the region, help reduce emissions, and make clean “firm power” (power available around the clock) more affordable. This is important because many renewable sources like wind and solar have variable output.

Google stated:

“Today we’re excited to announce a first-of-its-kind corporate agreement to support a gas power plant with CCS. Broadwing Energy, located in Decatur, Illinois, will capture and permanently store approximately 90% of its CO2 emissions. We hope it will accelerate the path for CCS technology to become more accessible and affordable globally, helping to increase generating capacity while enabling emission reductions.”

How Big is the CCS Market?

The CCS market has grown rapidly. One estimate values it at $8.6 billion in 2024, with a projected annual rate of 16% through 2034. At that pace, the market could reach $51.5 billion by 2034.

CCS market size, by technology 2034

Another estimate places the market size in 2024 at $3.68 billion, with growth to $5.61 billion by 2030. The power generation sector is a major part of the market. One report says 37% of the market was from power generation in 2024.

For data centers and tech companies like Google, CCS offers reliable low-carbon power. Given that global data center emissions may reach 2.5 billion tons of CO₂ through 2030, major tech firms are under pressure to decarbonize.

Experts also project that global CCS capacity will quadruple, reaching around 430 million tonnes of CO₂ per year from today’s 50 million tonnes. Investments of about $80 billion are expected over the next five years. North America and Europe currently lead, holding roughly 80% of growth projects, while China and other regions also scale up.

DNV_CCS_forecast_2050_CCS_uptake_in_selected_regions
Source: DNV

CCS currently addresses only 6% of the emissions needed for net-zero by mid-century. Experts still see it as key for hard-to-decarbonize industries like cement, steel, and hydrogen production.

Breaking New Ground in Clean Firm Power

This is the first time a major tech company has agreed to buy electricity from a power plant using CCS at this commercial scale in the U.S.

The deal brings several important benefits:

  • Google secures “firm” power for its data centers, reducing risks from intermittent renewable supply.
  • CCS gives a path to cut emissions from fossil fuel plants rather than shutting them down entirely.
  • It creates a business model for future CCS deals, making the technology more accessible and scalable.

For Google, the deal advances its goal of running on clean energy and especially 24/7 carbon-free power by 2030. For the broader industry, it sends a signal that large corporations support CCS and are willing to back it financially.

Hurdles Ahead for Carbon Capture

Despite the promise, CCS still faces hurdles. The upfront cost is high, and many projects require government incentives or strong contracts to make economic sense.

Another challenge is scale. According to a 2024 study, CCS capacity by 2030 may reach only 0.07–0.37 gigatonnes (Gt) CO₂ per year, which is just a small part of what’s needed to meet climate goals.

CCS capacity additions 2030
Source: DNV Report

For Google’s project and others like it to succeed, they will need strong regulation, clear carbon pricing, and reliable storage sites. Also, transparency and long-term monitoring are critical to ensure the CO₂ stays underground.

The Illinois plant is a start. If it runs successfully, it could spawn many more projects in power generation and industry. Corporations, utilities, and governments may replicate the model.

The Big Picture: From Data Centers to Decarbonization

Tech companies are building ever-larger data centers to fuel artificial intelligence, cloud computing, and global connectivity. This drives huge electricity demand. Google’s CCS deal shows one way to manage that demand while cutting carbon.

CCS combined with clean power can help sectors that cannot easily switch to renewables. Power plants that run on natural gas or industries like cement and steel may use CCS to reduce emissions.

For Google, the new deal helps it reach its sustainability targets, supports its data-center operations, and sets an example for other firms. The chart below shows the company’s emission reduction progress. For the climate, it offers a template for building low-carbon power systems at scale.

Google carbon emissions 2024
Source: Google

Final Thoughts: A Pivotal Moment for Clean Power

Google’s agreement signals a shift: clean, firm power is becoming a business reality, not just a promise. By backing a CCS-enabled gas power plant, Google is aligning business needs with carbon reduction goals.

The global CCS market is expanding fast. Estimates show billions of dollars flowing into the technology. But scaling remains challenging — cost, policy, and geology all play a role.

If the Illinois plant succeeds, it may influence how corporations, utilities, and governments design power systems in the future. It could help unlock CCS as one of the tools in the broader energy transition toolbox.

The post Google Invests in First Carbon Capture to Power AI and Cut Emissions appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Bitcoin Mining Stocks Hit New Highs on AI Pivot with CleanSpark Leading the Pack

Published

on

Bitcoin Mining Stocks Hit New Highs on AI Pivot with CleanSpark Leading the Pack

Bitcoin mining stocks jumped sharply this week after several big companies said they will expand into artificial intelligence (AI). Many miners now plan to use their computers and power systems for AI data centers, not just for Bitcoin.

CleanSpark led the rally after announcing its move into AI. The shift shows how fast the mining industry is changing as companies look for new ways to earn money.

CleanSpark Ignites the Rally

Las Vegas–based CleanSpark saw its shares rise as much as 13% on October 21, 2025. The company said it will build and run data centers made for AI computing, in addition to mining Bitcoin.

CleanSpark stock AI

CleanSpark also hired Jeffrey Thomas, a veteran with more than 40 years of experience, as Senior Vice President of AI Data Centers. Thomas once led Saudi Arabia’s multi-billion-dollar AI data center program. He has helped create about $12 billion in shareholder value across 19 companies.

Thomas remarked:

“CleanSpark is at a pivotal moment in its journey. Together, we have a tremendous opportunity to deliver exceptional solutions for our customers while creating long-term value for shareholders and positioning CleanSpark at the center of the AI and intelligent computing revolution.”

The company already secured land and extra power in College Park, Georgia, near Atlanta, to build its first AI sites. It is also studying more possible locations in other U.S. states.

The news came as Bitcoin prices climbed back above $110,000, recovering from earlier drops when the price fell from highs above $126,000 in early October.

bitcoin price

More Miners Follow the Same Path

CleanSpark is not alone. Many mining companies are now trying to grow beyond Bitcoin. The reason is clear: mining rewards have fallen, and energy costs are rising.

After Bitcoin’s 2024 halving, rewards for miners dropped from 6.25 BTC to 3.125 BTC. This made mining less profitable, pushing companies to look for other income sources.

Companies like Marathon Digital Holdings, Riot Platforms, Canaan, Core Scientific, Bitdeer Technologies, Hut 8, Cipher Mining, and TeraWulf have all announced similar plans. Their stocks also rose:

  • Marathon Digital gained 7.97% to $21.13.
  • Riot Platforms jumped 11.21% to $22.28.
  • Canaan, a hardware maker in China, surged about 28%.

Publicly traded Bitcoin miners raised more than $4.6 billion through loans and convertible notes in late 2024 and early 2025 to fund their AI projects.

The CoinShares Bitcoin Mining ETF, which tracks the sector, has soared 160% this year. Investors are clearly excited about the shift toward AI.

Why Miners Are Betting on AI

The move to AI computing makes sense for miners. They already own powerful hardware, data centers, and energy contracts. These can easily be used for AI instead of crypto.

AI systems need large amounts of electricity and fast processors to train and run models. Bitcoin miners already have this setup. By shifting to AI workloads, they can earn money even when Bitcoin prices are low.

According to the International Energy Agency (IEA), global demand for AI data centers could reach over 1,000 terawatt-hours per year by 2030 — about the same as all of Japan’s electricity use today.

data center electricity use 2035
Source: IEA

The global AI infrastructure market could be worth $1.3 trillion by 2032, growing around 25% each year. That makes it one of the fastest-growing industries in the world.

For miners, the message is simple: if Bitcoin mining is less profitable, AI computing can fill the gap and create steady revenue.

From Mining Rigs to AI Powerhouses

AI computing and Bitcoin mining use similar technology. Both rely on high-performance processors to handle huge amounts of data.

Miners already operate powerful chips, cooling systems, and strong electricity connections. They can reuse all these to run AI and high-performance computing (HPC) jobs.

CleanSpark plans to build hybrid data centers — some for Bitcoin, others for AI workloads. Likewise, Core Scientific said it will set aside part of its 1.3-gigawatt capacity for AI clients. Other companies are exploring similar plans.

This model could change the industry. Instead of just mining coins, these firms could become “compute providers” — selling power and computing to AI companies, research labs, and cloud platforms.

Investors See Opportunity Beyond Bitcoin

Investors like this new direction. It means miners no longer depend only on Bitcoin’s price swings. They can earn a steady income from long-term contracts with AI firms.

The IEA says global electricity use from data centers could double by 2030, largely because of AI. The U.S. has about 40% of the world’s data center capacity, but new projects face delays due to power and permitting issues.

data center electricity demand due AI 2030

Bitcoin miners already have access to large power sources. This gives them an edge when building new AI sites. They can repurpose their existing energy deals for AI computing, cutting startup time and costs.

Still, experts warn that running AI data centers is not easy. It needs new software, specialized equipment, and skilled workers. It also takes longer to make a profit compared to Bitcoin mining, which can adjust quickly to market prices.

Energy Use and the ESG Equation

Energy use remains a key concern for both AI and Bitcoin mining. The Cambridge Centre for Alternative Finance estimates Bitcoin mining uses about 120 terawatt-hours of electricity each year, roughly equal to Argentina’s total use.

bitcoin electricity consumption 2025
Source: Cambridge Centre for Alternative Finance

Mining companies are trying to improve their environmental impact. CleanSpark says it sources most of its electricity from renewable or low-carbon energy. It plans to apply the same approach to its AI expansion.

Switching to AI could also make mining more efficient. Many AI centers use advanced cooling systems and can run on renewable energy more easily than older mining farms.

This could help miners meet environmental, social, and governance (ESG) goals while supporting the growth of clean digital infrastructure.

A New Era of Digital Infrastructure

The rise of AI has opened a new chapter for Bitcoin miners. What began as a niche focused on crypto now looks more like a digital infrastructure industry that powers AI, data analytics, and renewable energy systems.

If the transition succeeds, mining companies could become important players in the global computing market. They would supply power and servers for everything from AI model training to smart grid management.

For investors, this change offers both opportunity and risk. It provides exposure to two fast-growing industries — crypto and AI — but also depends on how well miners adapt.

Analysts say the key will be execution. Building AI centers takes time and money, and not all miners will succeed. But those who manage the shift well could become leaders in clean, high-tech energy and computing. They will shape the next phase of digital infrastructure — one that connects blockchain, AI, and sustainable power.

The post Bitcoin Mining Stocks Hit New Highs on AI Pivot with CleanSpark Leading the Pack appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

UN Endorses First Article 6.4 Carbon Credit Methodology, Unlocking Billions for Global Carbon Markets

Published

on

UN Endorses First Article 6.4 Carbon Credit Methodology, Unlocking Billions for Global Carbon Markets

The United Nations has taken a major step in global carbon markets. A UN panel has approved the first methodology under Article 6.4 of the Paris Agreement. This marks the start of a new era in international carbon trading. The system will help countries and companies offset emissions under one global standard.

A New Chapter for Global Carbon Markets

Article 6.4, also known as the Paris Agreement Crediting Mechanism (PACM), aims to build a global market where countries can trade verified emission reductions. It replaces the old Clean Development Mechanism (CDM) from the Kyoto Protocol, which registered more than 7,800 projects between 2006 and 2020. This new system makes sure carbon credits come from real and measurable emission cuts.

The UNFCCC Supervisory Body met in mid-October 2025 to review new market methods. Their approval of the first one marks a major step for climate finance projects around the world.

The first approved method supports renewable energy projects, especially small wind and solar developments in developing countries. These projects are key to reducing emissions and expanding access to clean energy.

The International Energy Agency (IEA) says renewable energy in developing economies must triple by 2030 to reach global net-zero goals.

What Article 6.4 Means

Article 6.4 is part of the Paris Agreement’s cooperation plan. It lets one country fund emission reduction projects in another country and count those reductions toward its own climate goals. The system aims to:

  • Stop double-counting of emission reductions.
  • Improve transparency through strict monitoring.
  • Build trust between developing and developed nations. 
article 6.4 PACM
Source: UNFCCC

This system will help countries meet their Nationally Determined Contributions (NDCs) faster. The World Bank estimates that NDC cooperation could cut up to 5 billion tonnes of emissions annually by 2030. It could also unlock around $250 billion in climate finance each year, giving investors a clear way to support credible carbon projects.

At COP29 in Baku, world governments agreed on a new global climate finance goal for after 2025. They pledged to scale up funding for developing countries to at least $1.3 trillion per year by 2035 from public and private sources.

Developed nations will lead by mobilizing $300 billion annually, expanding on the earlier $100 billion target. The agreement allows developing countries to count their own contributions voluntarily. It also includes all multilateral development bank (MDB) climate finance. This aligns with expert estimates that developing nations need $3.1–3.5 trillion yearly by 2035 to meet climate investment and adaptation goals.

300 billion climate finance goal
Source: NRDC

From Rules to Real Markets

Until now, discussions around Article 6.4 have focused mainly on rules and design. The panel’s decision moves the system from theory to action. It shows that global carbon trading is ready to begin.

Experts predict global demand for carbon credits could reach 2 billion tonnes by 2030, and as high as 13 billion tonnes by 2050. The UN wants to make sure only verified, high-quality credits enter this fast-growing market.

Developing nations stand to benefit the most. Many have strong potential for renewable energy, reforestation, and methane reduction projects. Africa alone could supply up to 30% of the world’s high-quality carbon credits by 2030. These projects could create billions in new revenue for clean growth.

The new methodology allows these projects to earn credits that can be sold internationally, helping communities build clean energy and adapt to climate change.

Ensuring Integrity and Transparency

Old carbon markets faced criticism for weak integrity and unclear reporting. Article 6.4 aims to fix that. Every project must pass strict checks by independent auditors before earning credits. Credits will only be issued if real emission cuts are proven.

The Supervisory Body’s framework includes steps for:

  • Setting clear baselines for emissions.
  • Measuring reductions over time.
  • Monitoring performance using standard tools.

This process will help rebuild trust and attract new investors. Each credit will have a digital record, allowing buyers to trace where it came from and what impact it had.

Countries and companies with net-zero targets will finally have a credible tool to meet their goals. Over 160 nations now have net-zero pledges. Around 60% of global companies already use or plan to use carbon credits to reach their climate goals.

How Business and Finance Are Responding

The approval of the first methodology will draw major interest from the energy and finance sectors. Many firms have been waiting for a reliable, UN-backed system.

The voluntary carbon market was worth about $2 billion in 2023, according to McKinsey. It could grow to more than $100 billion by 2030 as Article 6.4 trading begins. The new system will also pressure companies to buy only verified and transparent credits, cutting down on “greenwashing.”

voluntary carbon credit demand growth
Source: McKinsey & Company

Regional exchanges and carbon registries are preparing to include Article 6.4 credits once the market launches. Exchanges in Asia, Europe, and Latin America are already aligning with UN rules. This will help stabilize global carbon prices, which currently range from under $5 per tonne in voluntary markets to more than $90 per tonne in the EU system.

More stable prices could encourage long-term investments in clean energy and climate projects. Experts expect Article 6.4 credits to trade at a premium once investors recognize their higher quality.

ESG and Environmental Impact

The new UN system supports Environmental, Social, and Governance (ESG) goals worldwide. Companies that buy Article 6.4 credits can cut their carbon footprint while funding sustainable projects in vulnerable regions.

Renewable energy projects such as solar and wind farms in Africa and Asia create jobs, cleaner air, and better access to power. The International Renewable Energy Agency (IRENA) reports that renewable energy jobs reached 13.7 million in 2024, with strong growth expected in developing countries. These social benefits align with the UN Sustainable Development Goals (SDGs) for clean energy and climate action.

With stronger oversight, the UN aims to stop misuse and deliver real results. As carbon markets expand, credit integrity will define success. A 2024 study found that up to 40% of older offset credits lacked verifiable emission savings. Article 6.4 aims to close that gap.

Toward a Fair, Transparent, and Unified Carbon Future

Challenges remain before the new system reaches full scale. The next step is to approve more methods for areas like forestry, agriculture, and industry. These sectors are complex and need careful rules to avoid overstating emission cuts.

Negotiations between countries will also continue. Some worry that carbon trading may let others delay domestic cuts. Others believe it will open new funding for clean energy and climate adaptation.

The UN says developing countries will need about $4.3 trillion each year by 2030 to meet climate and energy goals. Article 6.4 could help fill that funding gap.

The Supervisory Body will meet again before COP30 in Belém, Brazil, where it may approve more methodologies. Governments and investors are watching closely as the system expands.

The UN system promises a fair and transparent market for everyone. As carbon prices become more consistent, the focus will shift to ensuring projects deliver real benefits for people and the planet.

The post UN Endorses First Article 6.4 Carbon Credit Methodology, Unlocking Billions for Global Carbon Markets appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com