With three months of 2023 still remaining, Carbon Brief’s analysis reveals there is a greater than 99% chance that 2023 will be the hottest year since records began in the mid-1800s, and likely for millennia before as well.
In the “likelihood” language of the Intergovernmental Panel on Climate Change (IPCC), this means a new record year is “virtually certain”.
After a cooler start to the year, the past four months have seen truly exceptional global temperatures, surpassing prior monthly records by large margins.
Temperatures during the first few months of 2023 were suppressed by an unusually persistent triple-dip La Niña event, which resulted in lower global temperatures between late 2020 and the start of this year.
Then, starting in March, conditions in the tropical Pacific began to transition rapidly into what is shaping up to be a strong El Niño event. This will likely be weaker than the super El Niño events of 1997-98 and 2015-16, which helped drive record-warm years at the time.
However, global temperatures tend to respond around three months after peak El Niño conditions. The extreme temperatures the world has experienced over the past few months have occurred well before the current El Niño event is expected to peak.
This has led to lots of scientific speculation – though few firm conclusions yet – around the variety of factors that could be contributing to extreme global temperatures along with El Niño and the long-term accumulation of human-caused greenhouse gases.
Hottest year across all records
Based on the temperatures recorded over the first nine months of the year, current El Niño conditions and projected El Niño conditions over the remainder of the year, Carbon Brief can provide an estimate of where each different surface temperature record will likely end up. (See the methodological note at the end for details.)
The figure below shows both the prior record warmest year in each record (coloured square), as well as Carbon Brief’s central estimate of where 2023 will end up (coloured circle) and the 95th percentile confidence interval of that estimate.
(Note that a 2023 projection is not shown for the Hadley/UEA HadCRUT5 dataset given that September data is not yet available.)

Carbon Brief’s central estimate (dot) and 95th percentile range (whiskers) of where 2023 annual temperatures will end up relative to the pre-industrial period for each group. Note that Hadley/UEA is not shown as data was not available through September at time of publication. The Copernicus values shown here use HadCRUT5 data to estimate warming between 1850-99 and 1981-2010. See the methodological note at the end for details. Chart by Carbon Brief.
The figure below shows these estimates in context with their respective records going back to 1970.

Annual global average surface temperatures from NASA GISTEMP, NOAA GlobalTemp, Berkeley Earth and Copernicus/ECMWF (lines), along with 2023 estimates (as previous chart). Chart by Carbon Brief.
Based on Carbon Brief’s analysis, there is a greater than 99% chance that 2023 will be the warmest year on record across the NASA GISTEMP, NOAA GlobalTemp, Berkeley Earth and Copernicus/ECMWF datasets.
This is up substantially from the 47%-to-79% likelihood that Carbon Brief estimated at the end of July, reflecting just how high global temperatures have been over the past three months.
| GISTEMP | HadCRUT5 | NOAA | Berkeley | Copernicus | |
|---|---|---|---|---|---|
| 1st | >99% | TBC | >99% | >99% | >99% |
| 2nd | 0% | TBC | 0% | 0% | 0% |
| 3rd | 0% | TBC | 0% | 0% | 0% |
Estimated probabilities of where 2023 will rank compared to previous years for each global temperature dataset. Note that these probabilities do not include measurement uncertainty for each record. Hadley/UEA is not shown as data was not available through September at time of publication. See the methodological note at the end for details.
While all the different temperature datasets project that 2023 will exceed the prior 2016 record by a similar margin, the expected warming in 2023 relative to pre-industrial conditions varies widely across the datasets. The central estimates range from 1.29C (NOAA) and 1.35C (NASA) above pre-industrial (1850-99) levels, to 1.46C (Copernicus) and 1.53C (Berkeley Earth).
(It is important to note that hitting 1.5C in an individual year is not equivalent to a breach of the 1.5C warming limit in the Paris Agreement. The latter refers specifically to long-term human-caused warming and not annual temperatures that include the influence of natural fluctuations in the climate, such as El Niño.)
These differences primarily emerge from variations in how different temperature datasets reconstruct global temperatures in the period prior to 1920 – where global temperature data is more sparse – and which data is used. How gaps between observations are filled has a notable effect on the resulting temperatures. Differences in the ocean dataset used also contribute to variations across groups in estimated warming since pre-industrial times.
The figure below shows Carbon Brief’s estimated 2023 annual temperatures in the Berkeley Earth dataset (red square), as well as the 2023 value to-date (e.g. the average of the first nine months of the year, shown as a yellow diamond).
In this case the annual estimate is slightly higher than the value to-date due to the expectation of continued high global temperatures over the coming three months as El Niño conditions intensify.

Annual temperatures from Berkeley Earth from 1970-2022, along with year-to-date values (yellow diamond) and Carbon Brief’s 2023 projection for the dataset (red square and black whiskers). Chart by Carbon Brief.
New record becomes clear
This latest estimate is notably higher than most scientists expected early in the year. Because the year started out cooler compared to the prior few years, estimates of annual 2023 temperatures early in the year suggested that 2023 would only be one of the top four warmest years on record.
As the figure below shows, this projection started to change with warmer March, April and May temperatures. But it is only in the past two months that it has become unambiguously clear that 2023 will be the warmest year on record.

Similarly, as Carbon Brief reported back in January, most groups (including Carbon Brief) projected that 2023 would end up similar to or slightly warmer than 2022 at the start of the year.
The figure below shows 2023 projections made before any data was available for the year by NASA’s Dr Gavin Schmidt (purple square), the UK Met Office (dark blue), Berkeley Earth (blue) and Carbon Brief (yellow), compared to the latest estimate using data through September (red).

Annual temperatures from NASA GISTEMP from 1970-2022, along with 2023 estimates published at the start of the year prior to any 2023 data being available (coloured dots and whiskers), as well as the latest estimate using data through September (red dot and whiskers). Chart by Carbon Brief.
No one predicted just how extreme 2023 temperatures would be back at the start of the year (though Dr Schmidt was the closest).
The extreme summer temperatures that have driven such a change in fortunes for 2023 has drawn the attention of many scientists. On top of the long-term warming trend caused by human-caused greenhouse gas emissions, there are several other factors at play. In addition to the strong El Niño event, there are likely to be warming contributions from a reduced cooling influence from air pollution, a natural peak in the sun’s intensity and the water vapour injected into the stratosphere by the Hunga Tonga–Hunga Ha’apai volcanic eruption in January last year.
The climate science community is working hard to better understand these different drivers – and what they entail for global warming going forward.
Methodological note
A statistical multivariate regression model was used to estimate the range of likely 2023 annual temperatures for each group that provides a temperature record. This model used the average temperature over the first nine months of the year, the average ENSO 3.4 region value during the first nine months of the year and the average predicted ENSO 3.4 value during the last three months of the year to estimate the annual temperatures.
The model was trained on the relationship between these variables and annual temperatures over the period from 1970-2022 (or 1979-2022 for the Copernicus/ECMWF dataset). The model then uses this fit to predict both the most likely 2023 annual value for each group, as well as the 95% confidence interval. The predicted ENSO 3.4 region values for the last nine months of 2023 are taken from the IRI plume forecast.
The percent likelihood of different year ranks for 2023 is estimated by using the output of the regression model, assuming a normal distribution of results. This allows Carbon Brief to estimate what percent of possible 2023 annual values fall above and below the temperatures of prior years for each group.
The post Analysis: ‘Greater than 99% chance’ 2023 will be hottest year on record appeared first on Carbon Brief.
Analysis: ‘Greater than 99% chance’ 2023 will be hottest year on record
Climate Change
For proof of the energy transition’s resilience, look at what it’s up against
Al-Karim Govindji is the global head of public affairs for energy systems at DNV, an independent assurance and risk management provider, operating in more than 100 countries.
Optimism that this year may be less eventful than those that have preceded it have already been dealt a big blow – and we’re just weeks into 2026. Events in Venezuela, protests in Iran and a potential diplomatic crisis over Greenland all spell a continuation of the unpredictability that has now become the norm.
As is so often the case, it is impossible to separate energy and the industry that provides it from the geopolitical incidents shaping the future. Increasingly we hear the phrase ‘the past is a foreign country’, but for those working in oil and gas, offshore wind, and everything in between, this sentiment rings truer every day. More than 10 years on from the signing of the Paris Agreement, the sector and the world around it is unrecognisable.
The decade has, to date, been defined by a gritty reality – geopolitical friction, trade barriers and shifting domestic priorities – and amidst policy reversals in major economies, it is tempting to conclude that the transition is stalling.
Truth, however, is so often found in the numbers – and DNV’s Energy Transition Outlook 2025 should act as a tonic for those feeling downhearted about the state of play.
While the transition is becoming more fragmented and slower than required, it is being propelled by a new, powerful logic found at the intersection between national energy security and unbeatable renewable economics.
A diverging global trajectory
The transition is no longer a single, uniform movement; rather, we are seeing a widening “execution gap” between mature technologies and those still finding their feet. Driven by China’s massive industrial scaling, solar PV, onshore wind and battery storage have reached a price point where they are virtually unstoppable.
These variable renewables are projected to account for 32% of global power by 2030, surging to over half of the world’s electricity by 2040. This shift signals the end of coal and gas dominance, with the fossil fuel share of the power sector expected to collapse from 59% today to just 4% by 2060.
Conversely, technologies that require heavy subsidies or consistent long-term policy, the likes of hydrogen derivatives (ammonia and methanol), floating wind and carbon capture, are struggling to gain traction.
Our forecast for hydrogen’s share in the 2050 energy mix has been downgraded from 4.8% to 3.5% over the last three years, as large-scale commercialisation for these “hard-to-abate” solutions is pushed back into the 2040s.
Regional friction and the security paradigm
Policy volatility remains a significant risk to transition timelines across the globe, most notably in North America. Recently we have seen the US pivot its policy to favour fossil fuel promotion, something that is only likely to increase under the current administration.
Invariably this creates measurable drag, with our research suggesting the region will emit 500-1,000 Mt more CO₂ annually through 2050 than previously projected.
China, conversely, continues to shatter energy transition records, installing over half of the world’s solar and 60% of its wind capacity.
In Europe and Asia, energy policy is increasingly viewed through the lens of sovereignty; renewables are no longer just ‘green’, they are ‘domestic’, ‘indigenous’, ‘homegrown’. They offer a way to reduce reliance on volatile international fuel markets and protect industrial competitiveness.
Grids and the AI variable
As we move toward a future where electricity’s share of energy demand doubles to 43% by 2060, we are hitting a physical wall, namely the power grid.
In Europe, this ‘gridlock’ is already a much-discussed issue and without faster infrastructure expansion, wind and solar deployment will be constrained by 8% and 16% respectively by 2035.
Comment: To break its coal habit, China should look to California’s progress on batteries
This pressure is compounded by the rise of Artificial Intelligence (AI). While AI will represent only 3% of global electricity use by 2040, its concentration in North American data centres means it will consume a staggering 12% of the region’s power demand.
This localized hunger for power threatens to slow the retirement of fossil fuel plants as utilities struggle to meet surging base-load requirements.
The offshore resurgence
Despite recent headlines regarding supply chain inflation and project cancellations, the long-term outlook for offshore energy remains robust.
We anticipate a strong resurgence post-2030 as costs stabilise and supply chains mature, positioning offshore wind as a central pillar of energy-secure systems.
Governments defend clean energy transition as US snubs renewables agency
A new trend is also emerging in behind-the-meter offshore power, where hybrid floating platforms that combine wind and solar will power subsea operations and maritime hubs, effectively bypassing grid bottlenecks while decarbonising oil and gas infrastructure.
2.2C – a reality check
Global CO₂ emissions are finally expected to have peaked in 2025, but the descent will be gradual.
On our current path, the 1.5C carbon budget will be exhausted by 2029, leading the world toward 2.2C of warming by the end of the century.
Still, the transition is not failing – but it is changing shape, moving away from a policy-led “green dream” toward a market-led “industrial reality”.
For the ocean and energy sectors, the strategy for the next decade is clear. Scale the technologies that are winning today, aggressively unblock the infrastructure bottlenecks of tomorrow, and plan for a future that will, once again, look wholly different.
The post For proof of the energy transition’s resilience, look at what it’s up against appeared first on Climate Home News.
For proof of the energy transition’s resilience, look at what it’s up against
Climate Change
Post-COP 30 Modeling Shows World Is Far Off Track for Climate Goals
A new MIT Global Change Outlook finds current climate policies and economic indicators put the world on track for dangerous warming.
After yet another international climate summit ended last fall without binding commitments to phase out fossil fuels, a leading global climate model is offering a stark forecast for the decades ahead.
Post-COP 30 Modeling Shows World Is Far Off Track for Climate Goals
Climate Change
IMO head: Shipping decarbonisation “has started” despite green deal delay
The head of the United Nations body governing the global shipping industry has said that greenhouse gases from the global shipping industry will fall, whether or not the sector’s “Net Zero Framework” to cut emissions is adopted in October.
Arsenio Dominguez, secretary-general of the International Maritime Organization, told a new year’s press conference in London on Friday that, even if governments don’t sign up to the framework later this year as planned, the clean-up of the industry responsible for 3% of global emissions will continue.
“I reiterate my call to industry that the decarbonisation has started. There’s lots of research and development that is ongoing. There’s new plans on alternative fuels like methanol and ammonia that continue to evolve,” he told journalists.
He said he has not heard any government dispute a set of decarbonisation goals agreed in 2023. These include targets to reduce emissions 20-30% on 2008 levels by 2030 and then to reach net zero emissions “by or around, i.e. close to 2050”.
Dominguez said the 2030 emissions reduction target could be reached, although a goal for shipping to use at least 5% clean fuels by 2030 would be difficult to meet because their cost will remain high until at least the 2030s. The goals agreed in 2023 also included cutting emissions by 70-80% by 2040.
In October 2025, a decision on a proposed framework of practical measures to achieve the goals, which aims to incentivise shipowners to go green by taxing polluting ships and subsidising cleaner ones, was postponed by a year after a narrow vote by governments.
Ahead of that vote, the US threatened governments and their officials with sanctions, tariffs and visa restrictions – and President Donald Trump called the framework a “Green New Scam Tax on Shipping”.
Dominguez said at Friday’s press conference that he had not received any official complaints about the US’s behaviour at last October’s meeting but – without naming names – he called on nations to be “more respectful” at the IMO. He added that he did not think the US would leave the IMO, saying Washington had engaged constructively on the organisation’s budget and plans.
EU urged to clarify ETS position
The European Union – along with Brazil and Pacific island nations – pushed hard for the framework to be adopted in October. Some developing countries were concerned that the EU would retain its charges for polluting ships under its emissions trading scheme (ETS), even if the Net Zero Framework was passed, leading to ships travelling to and from the EU being charged twice.
This was an uncertainty that the US and Saudi Arabia exploited at the meeting to try and win over wavering developing countries. Most African, Asian and Caribbean nations voted for a delay.
On Friday, Dominguez called on the EU “to clarify their position on the review of the ETS, in order that as we move forward, we actually don’t have two systems that are going to be basically looking for the same the same goal, the same objective.”
He said he would continue to speak to EU member states, “to maintain the conversations in here, rather than move forward into fragmentation, because that will have a very detrimental effect in shipping”. “That would really create difficulties for operators, that would increase the cost, and everybody’s going to suffer from it,” he added.
The IMO’s marine environment protection committee, in which governments discuss climate strategy, will meet in April although the Net Zero Framework is not scheduled to be officially discussed until October.
The post IMO head: Shipping decarbonisation “has started” despite green deal delay appeared first on Climate Home News.
IMO head: Shipping decarbonisation “has started” despite green deal delay
-
Greenhouse Gases6 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Climate Change6 months ago
Guest post: Why China is still building new coal – and when it might stop
-
Climate Change2 years ago
Bill Discounting Climate Change in Florida’s Energy Policy Awaits DeSantis’ Approval
-
Greenhouse Gases2 years ago嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change2 years ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change Videos2 years ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Climate Change2 years ago嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Carbon Footprint2 years agoUS SEC’s Climate Disclosure Rules Spur Renewed Interest in Carbon Credits




