Connect with us

Published

on

Whether the family is sitting down for dinner in the kitchen or you and your roommates are marathoning Netflix in the living room, the sustainable tables from these brands will be your new gathering places for enjoying meals, drinks, and conversations together.

The sustainable table brands featured in this guide have furniture for any of your living and dining places:

  • Dining tables,
  • Side tables,
  • Coffee tables, and
  • Bar tables.

But first, you might be wondering: what is a sustainable table anyway?

What to Look for in a Sustainable Table

The word “sustainable” is used frequently and in so many different contexts that it can be difficult to pinpoint what exactly sustainable means.

That said, here are some key elements to consider when looking for your next coffee table, dining table, or desk.

Eco-Friendly Materials

When it comes to eco-friendly tables, wood is the most common material used because it’s a natural, renewable, and durable material that works with nearly any room or interior design style.

Note: If you find a brand that uses engineered wood or pressed wood, make sure to look on their website or ask about what adhesives are used. These products are often made from wood pieces that are bond together with glue that contains formaldehyde, which the EPA classifies as a “probable human carcinogen”.

Here’s what to look for to ensure sustainably-sourced wood:

  • Reclaimed Wood. Using existing resources reduces waste and the need to cut down additional trees. Plus, reclaimed wood — especialcan add authentic character to your table!
  • FSC-certified. The Forest Stewardship Council’s certification is the most widely used verification for responsible forestry practices. Just like any other large certification, the FSC seal is not perfect but can be an additional seal of approval to look for.
  • Traceability. Look to see if the brand can tell you where the wood was sourced from. Usually, smaller furniture brands will be able to have more transparency and traceability of their supply chain!
  • Local sourcing. Locally-sourced wood (from native or climate-appropriate trees) is preferable because sourcing locally reduces emissions from transportation.

Zero-VOC or Low-VOC Finishes

Similar to paints, finishes can contain Volatile Organic Compounds (VOCs). Not only do VOCs create environmental hazards like air pollution and smog but they also pollute your indoor air too.

According to the EPA, health impacts of VOCs include:

  • Eye, nose, and throat irritations
  • Headaches and nausea
  • Damage to the liver, kidney, and central nervous system
  • Some VOCs are also known or suspected carcinogens

All too often we think of environmental sustainability as something separate from ourselves — something “out there in nature”.

But as with so many aspects of sustainability, what’s healthy for the environment is also often healthy for us as well — humans are, in fact, part of the environment. That’s why this sustainable table guide only includes non-toxic tables, too.

Other Sustainability Initiatives

Some other initiatives to look for from sustainable table brands include:

  • Use of renewable energy to power their operations or the purchase of renewable energy credits to offset fossil fuel energy use.
  • Take-back and/or repair programs to extend the life of their tables.
  • Quality manufacturing that ensures durable products built to last.
  • Trustworthy tree planting projects, especially if the company uses wood for their products.

Where to Find Sustainable Tables

Just as with fashion, looking secondhand first is a great way to find eco-friendly furniture at a more affordable price. Check out your local flea markets, secondhand stores, and keep an eye out for estate sales.

For online secondhand options, check out:

If you’re looking for a new eco-friendly table made from responsibly-sourced or reclaimed materials, take a look at the brands below!

Disclaimer: This guide includes affiliate links and partners, but as always all brands are vetted rigorously for sustainability and are brands we love, that we think you’ll love too

Best for Dining Tables: Medley

walnut wood sustainable dining table with 4 chairs

Medley uses only FSC-certified walnut or maple hardwood for their solid wood eco-friendly dining tables and accent tables. Each table is finished with an all-natural furniture polish that consists of just beeswax, carnauba wax, and olive oil. And every table, just like the rest of Medley’s furnishings, is made in their own workshop in Los Angeles.

Conscious Qualities: FSC-Certified Wood, Transparent Local Production, Non-Toxic Finishes, Plants Trees

Price Range: Side tables start at $745 | Dining tables start at $2995

Check Out Medley

Best for Side Tables: Avocado

Sustainable wood tables from Avocado

Founded as a non-toxic mattress brand, Avocado has now expanded into a variety of sustainable and non-toxic furniture like beds, dressers, and of course tables.

Their collection of eco-friendly tables includes accent tables, side tables, benches & stools, and a beautiful zero waste coffee table. Every table is made to order in the company’s Los Angeles woodshop from either reclaimed wood, FSC-Certified solid wood, or even 100% upcycled wood (which is not particleboard or fiberboard).

The Sustainable Furnishings Council member also uses non-toxic finishes and glues, like zero-VOC stain and safe odorless glues. And, Avocado offsets more than 100% of their emissions and has several product- factory- and company-level certifications of note.

Conscious Qualities: Made-To-Order In Avocado’s Own LA Woodshop; Uses Reclaimed and Sustainably-Sourced Materials; Non-Toxic Finishes; Renewable Energy-Powered Operations

Price Range: Side tables start at $329

Check Out Avocado

Best Sustainability Practices: Sylvan Craft

sustainable wooden coffee table from Sylvan Craft

Perhaps you’ve heard of slow fashion or slow food — well Sylvan Craft is the epitome of slow furniture with their “Forest to Table” approach.

Sylvan Craft’s heirloom-quality tables (and other furniture) are all crafted with care from solid wood by their Amish business partner. And it’s not just any wood — this is wood that was sourced from Sylvan Craft’s own sustainably managed forest. Since their entire process from harvest to finished furniture takes place within a 5 mile radius, this “hyper-local” business also boasts a small carbon footprint and impressive average 8-10 week lead times on delivery. Blanket-wrapped shipping also minimizes packaging waste.

On a mission to preserve and restore forests through sustainable forestry and land management, Sylvan Craft has a meticulous forest management plan that centers on forest health. They employ selective harvesting (i.e. prioritizing damaged or dead trees for their wood), plant a variety of tree species to promote forest biodiversity, and use low-impact timber removal practices instead of heavy machinery.

Sylvan Craft’s selection of sustainably-crafted tables includes end tables, sofa tables, coffee tables, dining tables, and benches.

Conscious Qualities: Sustainable Forestry Management, Hyper-Local, Traceable Supply Chain, Heirloom Quality, VOC-Free Finish Option

Price Range: Side tables start at $525

Check Out Sylvan Craft

Best for Outdoor Tables: MasayaCo

dark wood sustainable outdoor table

Originally founded as a reforestation project, MasayaCo is a mission-driven sustainable furniture company that has planted 1.2 million trees to date. All of their pieces are made from the wood grown in these reforestation projects.

The company partners with local Nicaraguan designers and craftspeople to produce their sustainably-made furniture from their teak wood — the perfect material for outdoor furniture! MasayaCo’s teak hardwood is dried on-site in solar kilns and finished with water-based low-VOC finishes.

Conscious Qualities: Traceable Sourcing, Reforestation Projects, FSC-Certified, Artisan Made-to-Order

Price Range: Side tables start at $145 | Dining tables start at $1395

Check Out MasayaCo

Best for Durability: Emeco

Eco-friendly tables made from recycled materials by Emeco

Handcrafted in their own factory near Lancaster, Pennsylvania, Emeco’s minimalist sustainable tables are made to pass commercial-grade standards, ensuring they’ll be pieces for decades (if not generations!) to come.

The brand uses sustainably-harvested ash or reclaimed accoya wood and recycled aluminum to create their industrial-chic pieces. Many of their pieces are Cradle to Cradle Gold Certified, and are free of toxic chemicals like VOCs and formaldehyde.

One major bonus of Emeco’s sturdy eco-friendly tables? Most of them are suitable for outdoor use too. (Check out more sustainable outdoor furniture in this guide.)

Conscious Qualities: Sustainably-Sourced and Recycled Materials, Crafted in the Pennsylvania, Contract Grade Quality

Price Range: Tables start at $1740

Check Out Emeco

Best For Extendable Sustainable Tables: Copeland

walnut extendable sustainable dining table

If you’re looking for an eco-friendly dining table with a bit more flexibility, Copeland is going to be your best bet. The sustainable furniture company has solid wood tables in walnut, oak, and cherry wood available with leafs. Some table styles even have a double leaf extension for accommodating extra large dinner parties.

Copeland’s furniture is made-to-order in Bradford, Vermont and the company sources most of their wood within 500 miles of the factory. Speaking of Copeland’s factory, the brand doesn’t stop at sourcing sustainable materials but also has a solar array installed on the factory’s property and uses wood waste to heat the building. And the tables are low-toxic with a GREENGUARD certified finish.

Conscious Qualities: Domestically Sourced Hardwood, Made in the US, Made-to-Order, Durable, GREENGUARD Certified Finishes

Price Range: Side tables start at $508 | Dining tables start at $850

Check out Copeland @ Urban Natural

Best Artisan-Made Accent Tables: The Citizenry

natural rattan coffee table and solid wood nightstand from The Citizenry

The Citizenry has the most beautiful artisan tables ideal for completing your natural cozy minimalist aesthetic or adding an earthy touch to your bold boho living room. The brand has sustainable coffee tables made from natural rattan and eco friendly side tables and nightstands made from hinoki or mindi wood.

Every single product sold on The Citizenry is handcrafted in a fair trade environment, and their natural non-toxic tables are no exception. Most of this retailer’s sustainable side tables and coffee tables selection was made in Indonesia by artisans using traditional crafts.

Conscious Qualities: Artisan-Made, Fair Trade, Cultural Preservation, Natural Materials

Price Range: Starts at $349

Check Out The Citizenry

Best Non-Toxic Coffee Table: Savvy Rest

walnut eco-friendly coffee table made with non-toxic finishes

Non-toxic furniture brand Savvy Rest has a simple timeless coffee table made in Central Virginia from solid wood. Each table is made with responsibly-sourced maple — a durable yet lightweight hardwood — and is available unfinished or in a variety of zero-VOC finishes: linseed oil, walnut, cedar, or mahogany.

Conscious Qualities: Zero-VOC Finishes, Local Production, Sustainably-Sourced Wood

Price Range: $779+ for coffee table

Use code CONSCIOUSSTYLE20 for 20% off all products on Savvy Rest!

Check Out Savvy Rest

What About More Affordable Sustainable Tables?

When looking for affordable sustainable furniture, we always recommend checking secondhand first! Try estate sales, garage sales, local resale shops, or online platforms like FB Marketplace and OfferUp.

If you’d like to find a new table or just can’t seem to find what you’re looking for used, here are a couple options to check out.

Affordable Dining Table: Adyn

Black and wood sustainable affordable table

Adyn is a family-owned business founded by a Portland-based Architect and her son. Their signature furniture piece — the Center Table — is entirely made in Oregon. These tables, which are offered in three sizes, are versatile pieces that can function as dining room tables, desks, vanity tables, or minimalist console tables. They are designed to be long-term pieces, and the company shares that they can be assembled and reassembled in just minutes.

Committed to responsible sourcing, 100% of the wood Adyn uses is from a single wood mill in Oregon. All of the tabletop sizes are offered in three finishes: you can select from natural/white maple, which is finished with an FSC-certified White Maple veneer, or laminate, which is made with partially post-consumer recycled materials. The laminates Adyn uses are made in the US and have sustainability certifications like GREENGUARD Gold, NSF, and SCS.

*Note: While we typically recommend solid wood furniture, Adyn reports that their plywood is free of UF (urea-formaldehyde) adhesives.

Conscious Qualities: Responsibly-Sourced Materials, Made in Oregon, FSC-Certified Wood

Price Range: $1000 – $1800

Check Out Adyn

Affordable Coffee Table: Sabai

eco-friendly coffee table made from recycled steel and wood - Sabai

Sabai is a leader in sustainable furniture with their use of eco-conscious materials, ethical production practices, and low-waste shipping. Not to mention they’re committed to circularity with both a repair program and a resale program, called Sabai Revive.

Their City Table is so exception. This eco-friendly coffee table is made using recycled steel, wood sourced from urban fallen trees in Baltimore and a non-toxic, zero VOC water-based finish. Did we mention the brand is also a certified B-Corporation?

Conscious Qualities: Recycled & Natural Materials, Zero VOC Finish, Circularity Program

Price Range: $595

Check Out Sabai

We hope you enjoyed this guide to sustainable tables! Looking for more furniture & home furnishings?

Check Out These Sustainable Home Guides:

15 Ethical Home Decor Brands for Your Conscious Space

The Best Places to Find Eco-Friendly Furniture

Sustainable Non-Toxic Sofas for Truly Restful Relaxation

The post 10 Gorgeous Sustainable Tables to Gather Around (2024) appeared first on .

10 Gorgeous Sustainable Tables to Gather Around (2025)

Continue Reading

Green Living

Methane 101: Understanding the Second Most Important Greenhouse Gas

Published

on

By Olivia Rosane and Cristen Hemingway Jaynes

Quick Key Facts

  • Methane is the second most important greenhouse gas after carbon dioxide and is responsible for around one-third of current global heating.
  • Atmospheric methane concentrations have increased by 256 percent since pre-industrial times.
  • Methane is a more powerful greenhouse gas than carbon dioxide but lasts for far less time in the atmosphere; over a 20-year period, methane traps 86 times more heat per unit of mass than CO2.
  • Around 60 percent of methane emissions come from human-caused sources and 40 percent come from natural sources.
  • Ninety percent of human-caused emissions come from three sources: fossil fuels, agriculture and waste storage.
  • Currently existing strategies, if adopted, would be enough to curb methane emissions from these three sources by 45 percent by 2030.
  • It is possible to cut methane emissions from oil and gas operations by 70 percent with existing technologies and methods and by 40 percent at no cost.
  • Studies have shown that adding seaweed supplements to the diets of cattle can decrease their methane emissions by 82 percent for feedlot cattle, more than 50 percent for dairy cows and 42 percent for grazing cattle without harming the animals.
  • As of 2023, only 13 percent of all methane emissions were covered by any sort of emissions-reduction policy.
  • If everyone in the European Union limited their meat and dairy consumption by 34 percent, they would prevent six million metric tons of methane emissions per year.

What Is Methane?

What has no color or smell and is found in wetlands, cow burps and your basement furnace? The answer is methane — a powerful greenhouse gas that is the second most important contributor to the climate crisis after carbon dioxide (CO2). It is the primary component of natural gas, which currently generates around 25 percent of the world’s electricity.

Natural gas is flared off as oil is pumped in the Bakken shale formation in Watford City, North Dakota on May 28, 2014. Jim West / UCG / Universal Images Group via Getty Images

Methane is a hydrocarbon composed of four hydrogen atoms bonded to a carbon atom. It is abundant in nature and can be formed by both geological and biological processes. Geologically, methane is typically created when heat and pressure are applied to decomposing plant and animal matter over millions of years. This is the source of most natural gas. Methane can also form deep underground without any organic matter through other processes. Biologically, methane is generated through something called methanogenesis, when certain underwater microorganisms called archaea produce methane as part of their oxygen-free respiration process. This is how methane is generated above ground, such as in wetlands or in the digestive tracts of termites and cows.

How Is Methane Measured?

Scientists and engineers measure methane on the Isunnguata Sermia glacier of the Greenland Ice Sheet in western Greenland on July 9, 2024. Sean Gallup / Getty Images

Methane is measured via two main methods: bottom up and top down. These methods work almost exactly as they sound. Bottom-up approaches begin on the ground with a localized source of methane and expand outward. These assessments can either be based on direct measurements of a given facility’s methane emissions or by estimations based on general knowledge about the emitting animal or equipment. For example, to estimate the methane produced by a region or country’s beef or dairy sector, a bottom-up approach could multiply the methane emitted per cow by the number of cows being raised. A similar approach could be used to calculate the methane released by a county’s natural gas facilities or a region’s oil drilling operations.

Top down approaches often literally start in the sky with measurements of atmospheric methane, usually via airplane, high-altitude platforms or, increasingly, satellites. This data can then be combined with knowledge of where there are methane sources and sinks and used to create models of methane emissions.

Satellite image of methane emissions from a landfill in Kyrgyzstan on Feb. 4, 2021. GHGSat

As satellite technology improves, it is detecting super-emitting incidents that are not reflected in bottom-up approaches. For example, if a gas company assesses its methane emissions by multiplying the standard leak rate of a piece of equipment by the number of pieces of that equipment it uses, it will miss the five percent of extraordinary leaks that are responsible for more than half of all gas-industry leak emissions. Overall, direct measurements — whether from the ground or the air — are important for accurately measuring fossil fuel methane emissions in particular. One study found that direct measurements of U.S. oil and gas methane emissions were 60% higher than U.S. Environmental Protection Agency estimates. In general, improving methane measurements is essential for understanding and therefore controlling its emissions.

How Does Methane Contribute to the Climate Crisis?

Methane is a greenhouse gas, which means that, when it enters the atmosphere, it absorbs heat energy emitted from the planet and redirects it back toward the ground. There are natural methane sinks — namely soil and the troposphere, where methane is broken down into carbon dioxide and water vapor. These sinks are able to counteract naturally occurring methane emissions so that the gas does not build up in the atmosphere. However, human activities since the start of the industrial revolution — particularly the burning of fossil fuels, more intensive forms of agriculture and waste storage — have raised the concentration of methane in the atmosphere faster than natural sinks can absorb it.

As of 2023, the most recent year for which data is available, atmospheric methane concentration had soared by 265 percent to 1,934 ppb compared with pre-industrial levels. Around 60 percent of that methane was emitted due to human activities. That methane has contributed to around one-third of current global heating, second to CO2 at around two-thirds. If nothing is done to reduce methane emissions, they are projected to rise by 13 percent between 2020 and 2030.

Controlling methane emissions is essential for addressing the climate crisis because methane is both more potent than CO2 and also lasts for a shorter period of time in the atmosphere, approximately 12 years compared with hundreds. Over a 20-year period, methane traps 86 times more heat per unit of mass than CO2, which falls to 28 times more over 100 years. The combination of methane’s potency and relatively short atmospheric lifespan means that reducing methane emissions delivers a powerful bang for one’s buck in terms of rapidly curbing greenhouse gasses and stabilizing global temperatures. In fact, the Global Methane Assessment concluded that curbing methane “is very likely the strategy with the greatest potential to decrease warming over the next 20 years.” The Intergovernmental Panel on Climate Change (IPCC) has calculated that methane emissions must be reduced by around 34 percent by 2030 when compared with 2019 levels in order to limit global heating to 1.5 degrees Celsius above pre-industrial levels.

What Are the Main Sources of Methane?

Methane comes from both human and natural sources, with human-caused emissions responsible for around 60 percent of atmospheric methane and natural sources around 40 percent. More than 90 percent of current human-caused methane emissions come from three sources: agriculture, fossil fuels and waste storage. The burning of biomass and the use of biofuels also emit methane but are less important, as they are responsible for around five percent of emissions. Wetlands and freshwater are the leading source of natural methane emissions, followed by geological sources such as gas-oil seeps and volcanoes, termites, oceans, wild animals and permafrost. In addition, there are natural sources of methane that could play a larger role in the future as the climate crisis triggers various feedback loops.

Agriculture

Black Angus breed cattle in a feedlot. Clinton Austin / iStock / Getty Images Plus

Around 40 percent of human-caused methane emissions come from agriculture. The vast majority of these emissions are from livestock, which alone generate around 32 percent of human-caused methane emissions. This is primarily from enteric fermentation, which is how ruminant animals like cows, sheep and goats digest their food. Microbes in these animals’ digestive systems break down nutrients and produce methane as a byproduct. When it comes to methane emissions, cows raised for meat or milk are the primary contributors. Another way that livestock agriculture can generate methane is through the storage of manure, particularly that of pigs and cows. As meat consumption increases, these emissions are projected to rise by six million metric per year by 2030.

A second important agricultural contribution to human-caused methane emissions is the cultivation of rice at eight percent. Rice is grown in flooded patties, an environment that encourages the growth of methane-producing microbes. Finally, around one percent of human-caused methane emissions are caused by the burning of agricultural waste.

Fossil Fuels

The extraction and burning of fossil fuels contribute around 35 percent of human-caused methane emissions. Primarily, this occurs through the extraction, transport and use of oil and gas, at 23 percent of human-caused emissions. Methane is typically released during venting, when unwanted gas is released into the atmosphere during the extraction process, as well as through accidental leaks from extraction to transport to use. Emissions from oil and gas are expected to increase by 10 million metric tons per year by 2030, in particular because of the use of natural gas.

Around 12 percent of human-caused methane emissions are released during the process of mining coal, or from leaks from abandoned coal mines. Methane naturally occurs along coal seams, and can be released in several ways during the mining process: through seepage when the coal is exposed to the surface, through drainage systems, through ventilation systems to reduce methane buildup in a mine for safety reasons and from the coal itself as it is removed from the mine. Underground mines tend to emit more methane than surface mines, at 70 percent of mine emissions.

A coal mine in Jharia, India oozes fire, methane and other toxic gases on Oct. 25, 2014. Jonas Gratzer / LightRocket via Getty Images

Certain fossil fuel projects emit massive amounts of methane at once, usually due to leaks or venting. These are called “super-emitters” and are detectable through satellite imaging. In 2022, researchers detected more than 1,005 human-caused super-emitter incidents — 559 at oil and gas fields and 105 at coal mines. The worst, in Turkmenistan, spewed 427 metric tons of methane per hour, the equivalent of the hourly emissions of France. As methane emissions increased in the 2010s, experts think that fossil fuel activities contributed as much as agriculture and waste storage combined.

Landfills and Waste

Around 20 percent of human-caused methane emissions come from landfills and waste management systems. This is because microbes present in wastewater treatment facilities and landfills release methane as they decompose the waste. This can generate lots of methane at once: Of the 1,005 super-emitter events identified by researchers in 2022, 340 were from waste sites.

Because of population growth and projected development in poorer countries, emissions from waste are expected to grow faster than from any other human-caused methane source at 13 million metric tons per year by 2030. The amount of human-disposed solid waste overall is expected to rise by 73 percent by 2050.

People pass a landfill that is a huge emitter of methane in Barisal, Bangladesh on Jan. 21, 2025. Niamul Rifat / Anadolu via Getty Images

Wetlands

Wetlands are the predominant source of natural methane emissions, accounting for around one-third of total methane emissions. This is because wetlands — which cover around six percent of the Earth’s land area — are defined by having their soils saturated with water for all or part of the year. This creates a wet, oxygen-poor environment that creates ideal conditions for the archaea responsible for methanogenesis.

While wetlands would produce methane no matter what humans do, the climate crisis has led to an increase in wetland methane emissions in recent years due to temperature increases and changing rainfall patterns. This is known as the “wetland methane feedback.” Between 2000 and 2020, wetland methane emissions increased by 1.2 to 1.4 million metric tons per year, which is a higher rate than anticipated by the most pessimistic emissions scenarios. Scientists noted that these emissions saw “exceptional growth” in 2020 to 2021 in particular. The researchers traced this increase to two sources: tropical wetlands and permafrost wetlands.

Tropical wetlands are expanding their area due to climate-fueled changes in rainfall patterns and were the major driver of increased wetland methane emissions in the early 21st century. Permafrost wetlands are located in the Arctic and, as the name suggests, are partially frozen in addition to being waterlogged. When warmer temperatures cause permafrost to melt, they also unfreeze the microbes that release methane. Arctic wetlands have also expanded by 25 percent during the summer due to a rise in precipitation.

Oceans

The ocean is responsible for one to 13 percent of natural methane emissions through various mechanisms including geological marine seepage; emissions from ocean sediments or melting underwater permafrost; emissions near coastal areas where groundwater enters the sea; and the destabilization of methane hydrates, which are ice-like formations of methane and water on the seafloor. The largest concentration of methane on Earth is stored in these hydrates, and there are concerns that, as the climate crisis causes oceans to warm, these deposits might melt and release massive amounts of methane into the atmosphere. However, there is no evidence that any methane from these hydrates is currently reaching the atmosphere.

Positive Climate Feedback Loops

A positive feedback loop occurs when a change to a given system triggers other changes that amplify that initial change. In the case of the climate emergency, a positive feedback loop occurs when the impacts of global heating interact with Earth’s systems in ways that trigger more warming. When these changes pass a certain threshold, it can alter the system in dramatic and irreversible ways. This is called a climate tipping point.

Methane is involved in several positive feedback loops, of which the wetland methane feedback is just one example. Another related example is the thawing of the Arctic permafrost, frozen soils on land as well as beneath the Arctic Ocean. The material that is frozen beneath the permafrost contains plant and animal matter, as well as microbes that would produce methane if they thawed out. The permafrost beneath the ocean contains methane hydrates. This means that the Arctic currently contains 2.5 times more carbon underground than exists in the atmosphere. Thawing the permafrost would release all or some of that carbon, triggering a major tipping point. This process has already begun, with Arctic and Boreal methane emissions increasing by 9 percent since 2002. Scientists don’t know exactly how much methane the melting permafrost might ultimately release, but the region is currently on pace to release the greenhouse gas emissions of a major industrialized nation if nothing is done to reduce warming.

Another positive climate feedback loop involving methane is the increase in the frequency, severity and size of wildfires. A warmer climate makes the hot, dry conditions that fuel wildfires more likely, and these fires in turn release carbon dioxide and methane into the atmosphere as they burn, fueling more warming. Larger fires also tend to release more methane. One study found that California’s record-breaking 2020 wildfire season contributed almost 14 percent of the state’s total methane emissions for the year.

Methane and the ‘Bridge Fuel’ Myth

Another reason methane emissions might spike in the future is the expansion of gas production, including an increase in exports of liquefied natural gas (LNG). The development and spread of fracking in the U.S., Canada and Australia in particular has made gas much more abundant and set off a construction boom in infrastructure to export and import the fuel. The U.S. has massively increased its LNG exports since it lifted a ban on them in 2016, becoming the No. 1 natural gas exporter in the world by 2022. These exports doubled between 2019 and 2021 and will double again in four years if they continue.

Advocates of natural gas have argued that it is a “bridge fuel” from coal to more renewable sources of energy. This is because when burned for energy, coal emits twice as much carbon dioxide per kilowatt-hour as natural gas. In the U.S., direct power plant emissions decreased by almost 40 percent in the first decades of the 21st century, as gas overtook coal as the country’s leading electricity fuel source. Proponents of exporting U.S. LNG argue that it would similarly displace coal use in Europe and Asia. However, this ignores the methane that leaks during the process of extracting and transporting LNG. If only 0.2 percent of methane leaks, it makes LNG as climate-warming as coal, and new data, including satellite imagery, suggests that the amount of methane leaks have been vastly underestimated. A 2023 study calculated that, when methane leaks are taken into account, LNG has a 33% greater global warming potential over 20 years than coal. Further, the Department of Energy recently concluded that LNG exports are more likely to replace renewable energy sources than coal.

This new understanding comes as more gas fields and LNG export and import terminals are being planned. A 2022 analysis found that there are 55 “methane bomb” gas fields whose future methane leaks would equal 30 years of U.S. greenhouse gas emissions. The current and proposed construction of LNG export terminals in the U.S., meanwhile, would cancel out any climate progress the nation has made, keeping its greenhouse gas emissions frozen at 2005 levels. As U.S. climate campaigner Bill McKibben warned, “If the LNG build-out continues — here and in Canada and Australia — its sheer size will overwhelm our efforts to rein in global warming.”

What Are Other Benefits to Reducing Methane Emissions?

While stopping the acceleration of the climate crisis is a major argument for reducing methane emissions, these emissions don’t just heat the atmosphere. They also contribute to ground-level ozone, which forms as methane reacts to the atmosphere. Ozone at ground level is a major public health and environmental hazard because it damages human lung tissue, triggering respiratory ailments, and harms plants including agricultural crops. Currently, methane-generated ozone causes about half a million extra deaths per year. However, every million metric tons of methane emissions avoided would also prevent 1,430 yearly deaths from respiratory and heart diseases; 4,000 asthma-related emergencies and 90 hospitalizations per year; and annual losses of 145,000 metric tons of wheat, soybeans, maize and rice.

What Can Be Done to Reduce Methane Emissions?

There are many ways to reduce methane emissions that range from large-scale transformations of energy and food systems to smaller technical fixes. Most likely a combination of methods will be necessary to control methane emissions to reduce global heating and ozone pollution. However, currently existing methods, if adopted, would be enough to curb methane emissions from the three main human-caused sources — fossil fuels, agriculture and waste — by 45% by 2030, in line with the IPCC’s pathway to 1.5 degrees.

From Agriculture

There are two main ways to reduce the amount of methane produced by the food system. The first is to transform the food system altogether by reducing meat and dairy production. This can be done in part by reducing food waste, as 30 to 40 percent of all food produced is lost and does not make it to a person’s stomach. According to one calculation, the waste of ruminant and rice products is responsible for around 50 million metric tons of methane per year, and reducing it could cut those emissions by around 20 million metric tons. Another way is to shift toward more healthy, sustainable or plant-based diets, including by reducing overall consumption in wealthier countries. According to the IPCC, doing so would reduce greenhouse gas emissions overall by 5.3 to 20.2 gigatons of carbon-dioxide equivalent by 2050. Potential emissions reductions from dietary shifts run from 0.7 to eight gigatons of carbon dioxide equivalent per year by 2050, under scenarios ranging from half of the planet adopting a “healthy” diet that includes less than six grams of animal protein per day to a global embrace of vegetarianism.

The second main strategy for reducing methane emissions from agriculture is to make changes to existing production so that it releases less methane. One way to do this is to increase the efficiency of animal agriculture so that more meat or milk is produced per animal, especially in poorer countries. This can be done without sacrificing animal welfare by feeding animals better diets, including highly digestible feed; improving animal health overall; and breeding. Another solution is to add enteric methane inhibitors to the diets of ruminants, which prevent methane production in their guts. Promising examples are the chemical 3-NOP and seaweed. Studies have shown that adding seaweed supplements to the diets of cattle can decrease their methane emissions by 82 percent for feedlot cattle, more than 50 percent for dairy cows and 42 percent for grazing cattle without harming the animals in any way. Researchers are also working to breed ruminants who produce less methane and to develop a vaccine that would limit gut methane production.

Another major source of agricultural methane that can be targeted for reduction is manure storage. Solutions include reducing the amount of time manure is stored; covering tanks holding semi-solid waste; separating liquid and solid manure; and adding acid to manure storage facilities, which inhibits the growth of methane-producing microbes. Another solution that has been adopted in recent years is the use of manure digesters, which turn manure into biogas, reducing manure’s methane emissions and providing a non-fossil form of energy. However, there are emerging concerns that methane leaks from these machines may undermine their impact.

Finally, emissions from rice can be curbed by various methods. One strategy is to grow either higher yield or lower-methane varieties of rice, which reduce the amount of methane emitted per kilogram. Planting lower-methane rice could cut emissions by 22 to 51 percent. Another option is to change how rice is grown by using Alternative Wetting and Drying. Instead of keeping rice paddies flooded, this method involves letting them dry out completely before flooding again and can decrease emissions by 40 to 45 percent. Finally, adding phosphogypsum and sulphate to rice fields can decrease microbial methane production.

From Fossil Fuels

The No. 1 way to reduce methane emissions from fossil fuels is to phase out their use entirely as soon as possible while rapidly transitioning to renewable forms of energy that do not emit methane and in particular to halt the buildout of LNG infrastructure. However, there are also ways to reduce the methane emissions from fossil fuel infrastructure still in use, and in fact reducing methane emissions from ongoing oil and gas operations is considered the strategy with the most short-term potential for significant methane cuts.

According to the International Energy Agency (IEA), it is possible to slash the oil and gas sector’s methane emissions by 70% with existing technologies and methods and by 40% at no cost. These methods include leak detection and repair, installing devices to detect methane and phasing out equipment that releases methane when used. For coal, it is more difficult to reduce emissions while still mining and burning coal, but there are strategies such as requiring new mines to use degasification wells and drainage boreholes to capture methane and capturing and reusing methane in existing mines. It is also possible to avoid methane emissions from equipment no longer in use by capping abandoned gas wells and flooding retired mines.

From Landfills and Waste

Ideally, the best way to reduce methane waste from landfills would be to move toward a zero-waste circular economy that reuses all material throughputs. Specific strategies toward this goal include reducing food waste, keeping organic waste out of landfills and diverting it toward composting systems, capturing methane emissions from landfills and covering landfills with soil containing organisms that can break down methane.

Reducing methane emissions from wastewater can mostly be achieved by upgrading treatment facilities. This includes replacing latrines with actual wastewater treatment plants and making sure that facilities that provide primary treatment — removing solid pollution — also provide secondary treatment — removing organic matter and nutrients with the help of bacteria and microorganisms — and tertiary chemical treatment. Wastewater treatment plants can also be built to capture and reuse biogas.

Direct Removal

While it is important to rapidly move to reduce human-caused methane emissions, some scientists are investigating methods of directly removing methane from the atmosphere to augment these efforts. This can be achieved in two main ways: by bolstering the abilities of natural ecosystems to remove and store methane and through direct geoengineering.

On the ecosystem side, scientists have discovered that tree bark has remarkable methane-absorbing abilities, as it contains organisms called methanotrophs that essentially eat methane. Preserving forests, reforesting or intentionally planting tree species that have greater methane-storing ability could all be ways to take advantage of this nature-based solution.

A potential geoengineering method would be to release iron salt into the atmosphere. This would mimic what happens when dust from Sahara sand storms collides with the sea spray of the Atlantic — instigating a chemical process that breaks down methane. However, more research is required to determine if and how this could be done both safely and effectively. Ultimately, it is safest to rely on the methods that we know work to stop methane from reaching the atmosphere in the first place.

What Progress Has Been Made to Reduce Methane Emissions So Far?

At the COP26 United Nations climate change conference in 2021 in Glasgow, Scotland, the UK and United States launched the Global Methane Pledge. As of January 2025, a total of 159 nations had joined the pledge. Pledge members agreed to work toward cutting global methane emissions by 30% of 2020 levels by 2030. Doing so would be consistent with limiting global warming to 1.5 degrees Celsius above pre-industrial levels and could prevent 0.2 degrees Celsius of warming by 2050. While the pledge’s website claims that it has “generated unprecedented for methane mitigation,” this is yet to manifest in real-world reductions.

Methane emissions broke a new record in 2023, the most recent year for which data is available. Even though the oil and gas sector offers the most possibility for rapid methane cuts, and roughly 80% of that sector falls under a methane-reduction pledge, its total emissions have continued to rise since 2020 and remained past 120 million metric tons per year in 2024. All methane pledges made by governments and companies as of 2023 would in theory be enough to reduce fossil fuel methane emissions by 50% by 2030, but to do this the industry must close its implementation gap. Further, there are major gaps in these commitments. As of 2023, only 13 percent of all methane emissions were covered by any sort of emissions-reduction policy.

What Can Individuals Do to Reduce Methane Emissions?

The two simplest, most effective things that people can do to reduce their individual methane emissions are to switch to lower-methane diets and to reduce their daily food waste through measures such as meal planning, buying “ugly” foods and composting. If you feel intimidated at the thought of going entirely vegetarian or vegan, even just reducing your meat and dairy consumption can make a difference. One study found that if everyone in the European Union limited their meat and dairy consumption by 34%, they would prevent six million metric tons of methane emissions per year.

If you are a homeowner who either cooks on a gas stove or receives heat via a gas furnace, you can replace your gas range with an electric or induction option and swap your furnace for an electric heat pump. Renters may not be able to swap out appliances, but they can still reduce their gas use by finding creative ways to save energy — such as air-drying clothes — or supplementing gas heating and cooking appliances with electric devices like space heaters, rice cookers, microwaves or induction burners.

Ultimately, methane emissions — like all climate pollution — are the products of complex energy, food and waste systems that are kept in place partly because they benefit powerful people who are currently profiting from them. Reducing your personal methane emissions will not remake those systems on its own, but you can also join together with like-minded people to campaign for change. This could range from lobbying your city government to create a municipal composting system to joining or supporting groups like 350.org, Third Act, Oil Change International, Louisiana Bucket Brigade and South Texas Environmental Justice Network that are working to stop the LNG buildout globally, nationally and in their communities.

Takeaway

Methane emissions present both a threat and an opportunity. Because methane is so much more potent than carbon dioxide, it can further turbocharge the global heating that is already raising the thermostat and fueling more extreme storms and other weather events. However, its shorter atmospheric lifespan means that acting urgently to cut its emissions would enable us to make important and timely headway on combating the climate crisis overall. That is why it’s important to spread the word about methane — how it’s released and how to reduce it — and to put pressure on political and business leaders to act on that knowledge.

The post Methane 101: Understanding the Second Most Important Greenhouse Gas appeared first on EcoWatch.

https://www.ecowatch.com/methane-facts-ecowatch.html

Continue Reading

Green Living

Mass Die-Off of Western Monarch Butterflies Linked to Pesticides, Study Finds

Published

on

A new peer-reviewed study has linked pesticides as a likely cause to a mass die-off of Western monarch butterflies that occurred in 2024.

In January 2024, researchers found hundreds of dead or dying monarch butterflies near the Pacific Grove Monarch Sanctuary in California, where Western monarch butterflies typically overwinter.

As The Guardian reported, researchers found the butterflies showing signs of neurotoxic pesticide poisoning, leading to further testing and analysis that has now been published in the journal Environmental Toxicology and Chemistry.

The researchers tested the dead butterflies using liquid and gas chromatography and mass spectrometry, which led the team to find a mix of 15 insecticides, herbicides and fungicides present on the butterflies.

“We found an average of seven different pesticides per butterfly, including multiple insecticides that are highly toxic to insects,” Staci Cibotti, lead author of the study and pesticide risk prevention specialist at Xerces Society for Invertebrate Conservation, said in a statement. “Although a review by Monterey County could not determine the source of the chemicals, the high levels detected suggest that insecticides were likely responsible for the monarch deaths.”

According to the study, three human-made pyrethroid insecticides, including bifenthrin, cypermethrin and permethrin, were found at or near their lethal doses. Further, every sample included bifenthrin and cypermethrin, and all but two samples contained permethrin.

Western monarch butterflies overwinter along the Pacific coast, but they are vulnerable to pesticide residue and drift from nearby farms and urban areas, Cibotti explained.

According to the Xerces Society for Invertebrate Conservation’s annual Western Monarch Count, monarch populations dropped to the second-lowest number ever recorded in 2024, and by 2025, overwintering Western monarchs totaled just 9,119 individuals.

There were already reasons to suspect pesticides for the death of hundreds of monarchs at an overwintering site in 2024, but our new research provides clear evidence of what happened. Each monarch had, on average, 7 different pesticides, many at lethal doses. ➡ xerces.org/press/study-…

[image or embed]

— The Xerces Society for Invertebrate Conservation (@xercessociety.bsky.social) July 23, 2025 at 3:31 PM

The Western monarch butterfly population has declined by almost 95% since the 1980s, Xerces Society reported. Migratory monarch butterflies are listed as endangered by the International Union for Conservation of Nature (IUCN), and the U.S. Fish and Wildlife Service estimated that Western monarch butterflies have a 99% chance of becoming extinct by 2080, the Los Angeles Times reported.

As such, preventing the deadly effects of pesticides is a priority for monarch butterfly conservation. Following the study results, Xerces Society has recommended several actions, including increased education about pesticide risks and safer alternatives, establishment of pesticide-free zones around overwintering sites, greater pesticide exposure protections in conservation and recovery plans for butterflies, and stronger coordination and tracking for pesticide risks by public officials.

“Protecting monarchs from pesticides will require both public education and policy change,” Emily May, co-author of the study and agricultural conservation lead at Xerces Society, said in a statement. “We are committed to working with communities and decision-makers to ensure that overwintering sites are healthy refuges for these butterflies.”

The post Mass Die-Off of Western Monarch Butterflies Linked to Pesticides, Study Finds appeared first on EcoWatch.

https://www.ecowatch.com/monarch-butterflies-deaths-pesticides.html

Continue Reading

Green Living

Global Hunger Fell Overall in 2024, but Rose in Africa and Western Asia as Climate and Conflict Threaten Progress: UN Report

Published

on

World hunger fell overall last year, but continued to rise in most of Africa and western Asia, according to a new report — The State of Food Security and Nutrition in the World (SOFI) — published by five specialized UN agencies and released Monday by the Food and Agriculture Organization of the United Nations (FAO).

Roughly 8.2 percent of the world’s population — about 673 million people — suffered from hunger in 2024, a press release from FAO said. The number was down from 8.7 percent in 2022 and 8.5 percent in 2023.

“While it is encouraging to see a decrease in the global hunger rate, we must recognize that progress is uneven. SOFI 2025 serves as a critical reminder that we need to intensify efforts to ensure that everyone has access to sufficient, safe, and nutritious food. To achieve this, we must work collaboratively and innovatively with governments, organizations, and communities to address the specific challenges faced by vulnerable populations, especially in regions where hunger remains persistent,” said FAO Director-General QU Dongyu in the press release.

Between 638 and 720 million people faced hunger in 2024.

Swipe to learn what are the policy solutions to help address the impacts of high food prices on global hunger.

buff.ly/AQA3wsf

#SOFI2025

[image or embed]

— Food and Agriculture Organization of the United Nations (@fao.org) July 29, 2025 at 1:31 PM

The report indicates that from 638 to 720 million people faced hunger last year, representing a decrease of approximately 15 million from 2023 and 22 million from 2022.

The number of those who were undernourished in Asia fell to 6.7 percent, down from 7.9 percent two years earlier. The Caribbean and Latin America also saw improvements, with undernourishment decreasing to 5.1 percent of the population — 34 million people — in 2024, following a 2020 peak of 6.1 percent.

“Unfortunately, this positive trend contrasts sharply with the steady rise in hunger across Africa and western Asia, including in many countries affected by prolonged food crises. The proportion of the population facing hunger in Africa surpassed 20 percent in 2024, affecting 307 million people, while in western Asia an estimated 12.7 percent of the population, or more than 39 million people, may have faced hunger in 2024,” FAO said.

At the same time, those experiencing constraints on adequate food access for part of the year — “moderate or severe food insecurity” — decreased to 28 percent in 2024, or 2.3 billion people, down from 28.4 percent in 2023.

“In recent years, the world has made good progress in reducing stunting and supporting exclusive breastfeeding, but there is still much to be done to relieve millions of people from the burdens of food insecurity and malnutrition,” said WHO Director-General Dr. Tedros Adhanom Ghebreyesus.

In low-income countries, 544.7 million people—that’s 72% of the population—couldn’t afford a healthy diet in 2024.

Food is a basic right, not a luxury.

Learn more in the 2025 State of Food Security and Nutrition in the World report 👉 bit.ly/4mjX2nK #SOFI2025

[image or embed]

— WHO (@who.int) July 28, 2025 at 12:10 PM

It is estimated that 512 million people could experience chronic undernourishment by 2030, nearly 60 percent of whom will be in Africa. FAO, the International Fund for Agricultural Development (IFAD), the UN World Food Programme (WFP), the United Nations agency for children (UNICEF) and the World Health Organization (WHO) said this highlights the enormous challenge of reaching the Sustainable Development Goal of Zero Hunger.

The report examined the consequences and causes of the food price surge of 2021 to 2023 and its effect on global food security and nutrition. Food price inflation — caused by a combination of the world’s policy response to the COVID-19 pandemic, the impacts of Russia’s war on Ukraine and extreme weather across the globe — has hindered recovery in nutrition and food security since 2020.

Low-income nations have been especially impacted by rising food prices.

“While median global food price inflation increased from 2.3 percent in December 2020 to 13.6 percent in early 2023, it climbed even higher in low-income countries, peaking at 30 percent in May 2023,” FAO said.

But even with rising food prices around the world, the number of those not able to afford to eat a healthy diet fell to 2.6 billion last year, down from 2.76 billion in 2019.

However, in low-income countries, the number of those who couldn’t afford a healthy diet rose to 545 last year, up from 464 million five years earlier. In lower-middle-income nations other than India, the number increased to 869 million from 791 million during the same period.

“In times of rising food prices and disrupted global value chains, we must step up our investments in rural and agricultural transformation. These investments are not only essential for ensuring food and nutrition security – they are also critical for global stability,” said IFAD President Alvaro Lario.

The report recommended a combination of food price inflation policy responses, including transparent and credible monetary policies aimed at containing inflationary pressures; time-bound and targeted fiscal measures like social protection programs to shield vulnerable households; and strategic investing in agrifood research and development, market information systems to boost resilience and productivity and transportation and production infrastructure.

“Every child deserves the chance to grow and thrive. Yet over 190 million children under the age of 5 are affected by undernutrition, which can have negative consequences for their physical and mental development. This robs them of the chance to live to their fullest potential,” said UNICEF Executive Director Catherine Russell. “We must work in collaboration with governments, the private sector and communities themselves to ensure that vulnerable families have access to food that is affordable and with adequate nutrition for children to develop. That includes strengthening social protection programs and teaching parents about locally produced nutritious food for children, including the importance of breastfeeding, which provides the best start to a baby’s life.”

The post Global Hunger Fell Overall in 2024, but Rose in Africa and Western Asia as Climate and Conflict Threaten Progress: UN Report appeared first on EcoWatch.

https://www.ecowatch.com/global-hunger-2024.html

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com