Connect with us

Published

on

Weather Guard Lightning Tech

Wind Turbine Cost: How Much? Are They Worth It in 2025?

by Dan Blewett

How much does a wind turbine cost in 2025? While renewable energy is no longer a “new” idea and large, green energy wind farms are more common – and more efficient – the combination of technology, construction, and operating expenses mean that a wind turbine’s initial cost is very expensive.

And calculating the “simple” cost of a wind turbine isn’t simple at all. Current projections for the cost of an offshore turbines cost is about $1.5M per Megawatt of power produced – meaning a 10MW wind turbine would come to about $15,000,000. But myriad factors go into the actual calculations.

For regular updates on wind turbine costs and the technology , people and policies driving the industry, follow the Uptime Wind Energy Podcast and subscribe to Uptime Tech News. It’s free! Subscribe now: https://substack.com/@uptimetechnews

Wind Turbine Cost: How Much? Are They Worth It in 2025?

Header image credit: GE Vernova

This article provides the numbers you need to understand how much does a wind turbine cost, do they actually pay for themselves over time, and is the upfront investment worth it?

As development for offshore wind farms has accelerated, over the past 20 years, the Biden Administration created some additional opportunities in the industry in the United States. As wind anticipated a second Trump administration, the economics of wind energy in the US were initially called into question. But both wind and the larger renewables market are bigger than shifting political policies. Since the renewable energy transition is well underway all over the world, the US is almost certain to remain a significant player. The mix of onshore and offshore wind energy is one of many unknowns that will affect the market, and specifically, the initial cost of a wind turbine.

When considering the cost of a wind turbine, it seems reasonable to pick one model of turbine to compare costs “apples to apples.” That alone is a daunting task, with cost estimates for off-shore wind more difficult to pin down than onshore wind, and costs of turbines designed for even modest-sized onshore wind farms vary based on the conditions of various wind farm locations.

Calculating even an “average” cost of a wind turbine in 2025 is a complicated math problem – actually, it involved numerous math problems and multiple conditions. We’ll explore several “solutions” to this problem.

In 2024, there were hints that manufacturers may reduce the number of models that they offer, for two basic reasons: profitability, and engineering reliability. If you’re not familiar with the wind energy market, it helps to start with a bit of an industry overview to understand how wind turbine costs are determined.

Are Wind Energy costs REally going down? Is Wind Energy Getting Too Cheap?

In recent years, wind turbine manufacturers like Siemens have expressed concerns that the cost of wind energy is getting too low to maintain the development and growth of the market. Rising costs, and government pricing structures present constant challenges to manufacturers.

In 2022, Nordex raised its turbine prices (approximately 12%) due to cost increases and rising interest rates; other turbine manufacturers increased prices as well. In 2023, wind turbine prices were more steady. Midway through the year, Nordex, based in Germany, recorded an average selling price of €890,000/MW or about $965,000/MW USD. [1]

In May 2023, Siemens’ Tim Dawidowsky famously commented, “it’s all about cash.” Obviously, Dawidowsky wanted to see European turbine makers get more money – and he’s not alone. When we reported on Dawidowsky’ s comment in an Uptime Podcast episode, we explained it in context with other concerns about energy pricing strategies. Nothing happens in a vacuum, and wind energy costs – including almost every piece of hardware in a wind turbine – are affected by myriad global factors more than most industrial products .

Of those factors, energy costs are the most difficult to pin down. Because different countries finance energy in vastly different ways, the industry absolutely does not enjoy a level playing field. While many European countries control energy developments outright – and other countries, like the US, has a long history of incentives and subsidy programs – it is difficult to determine actual costs, true profits and losses, and almost impossible to compare energy costs between nations. Even ‘simple’, hard costs – like blade and nacelle structures – fluctuate due to political policies and how they are expected to influence future prices.

The Biden administration’s IRA (Inflation Reduction Act) committed billions to green energy incentives from 2021-2024, and the effects of some of those programs continue. For weekly discussions on wind industry business and technology, listen to the Uptime Wind Energy Podcast here.

Where in the world are the most profitable wind projects?

IntelStor founder Philip Totaro addressed this question in the May 7, 2024 edition of Recharge News . Totato is a regular member of panel discussions on The Uptime Wind Energy Podcast.

How Much Does a Wind Turbine Cost Initially?

For commercial wind turbines, the answer is millions of dollars per turbine.

wind turbine cost

Wind turbines cost a lot, and as such the investment is to be recouped over a long period of time.

Turbines produce significant electricity and sell it back to local power utilities where it flows to the power grid, to be used by homes and businesses.

The Breakdown of Initial Wind Turbine Costs

  • $2.6 – $4 million per average-sized commercial wind turbine
    • Typical cost is $1.3 million per megawatt (MW) of electricity-producing capacity
    • Most commercial wind turbines have a capacity of 2-3 MW, but offshore turbines can be as large as 16-18 MW
    • Cost increases as turbine size increases, though there are benefits to using fewer, larger turbines – complexity and construction of the overall farm site is greatly reduced with fewer and larger turbines.

Interested in Wind Energy? Check out Our Wind Energy Podcast: Uptime

Listen to Uptime on Any Podcast Platform

Costs vary widely around the world. Why? It’s complicated

From Australia to Brazil to Canada to the UK, energy project are developed (read: funded and subsidized) in vastly different ways, largely due to different forms of governments. But there are many other stickier issues that make determining the cost of a wind turbine more difficult than your average accounting problem.

Different countries “adjust” the cost of materials, labor and land though artificially (or actually) reducing wages, and adding tariffs and taxes. In the US, well-intentioned initiatives like the Jones Act can increase the initial cost of wind turbine manufacturing – but in the long term, they should increase the value of the country’s wind energy market. The US isn’t the only country that creates such political constraints. Since 2022, throughout 2023, 2024 and well into 2025, the Jones Act is significantly impacting offshore wind turbine costs. In one August 2024 podcast episode, we detailed some of Orsted’s financial troubles. (Orsted is based in Denmark.) For more information on the business side of wind turbine costs and overall industry growth, listen to the Uptime Wind Energy Podcast every week. It’s eye-opening!

Wind Turbine Maintenance Costs

Once built, maintenance is an ongoing expense.

  • 1-2 cents per kilowatt-hour produced, or
  • $42,000 – $48,000 per year

Operation and maintenance costs can be significant, but all of these machines are long-term investments continue to (hopefully) pay for themselves over time.

wind turbine damage

A wind turbine study using German data showed that these costs can be 1-2 Eurocents per kilowatt hour (kWh) produced, on average.

wind turbine cost maintenance

This number climbs as the the turbine ages, which is not surprising considering the wear and tear and harsh environments these machines operate in.

How Operation & Maintenance Requirements Impact Wind Turbine Cost

Operation & maintenance (O&M) typically includes the following:

  • Insurance
  • Land costs, rent and taxes
  • Service, repair and spare parts
  • Administrative tasks
  • Power (it does take some electricity to run)
  • Miscellaneous

These recurring costs are not too significant, and the turbine will significantly outproduce the maintenance costs.

Repairs can be a significant capacity reducer (more on this later), and lightning strikes on wind turbines can be a real problem.

Though turbine blades leave the factor with a lightning protection system, often they are inadequate.

Especially for offshore wind turbines–where transporting workers for repair is costly and time-consuming–additional layers of lightning protection is important.

Products like segmented lightning diverters can provide additional protection from lightning strike damage to wind turbines.

How Much Electricity Does a Wind Turbine Produce?

We’ve covered costs, so now lets turn to the big question: how much electricity does a wind turbine generate?

wind farm up close

Wind turbines are sized in megawatts (MW), which refers to their capacity to create electricity.

One megawatt = 1,000,000 watts of power. One megawatt can power about 1000 homes for a month but in reality, wind turbines don’t come close to producing their rated capacity because of changing wind speeds.

Size of the Wind Turbine Affects Electricity-Producing Capacity

Wind turbines cost more the bigger they get, but they produce more electricity with larger nacelles and turbine blades.

offshore wind turbine

In its latest report on average rotor diameter size, Statistica said rotors for onshore wind turbines had risen to 129 meters (423 feet).

Common commercial wind turbine sizes in megawatts:

Offshore wind farms choose larger wind turbines in part because of the high cost of installing them and transporting the electricity, as well as the increased efficiency they gain with consistent, faster wind speeds.

It’s preferable to build one turbine rather than many smaller ones because fewer towers and ground anchoring systems have to be constructed, making everything less complicated.

Wind Speed & Direction Affects “Capacity Factor” in Electric Production

At full wind speed, a turbine can produce at it’s full capacity. If a turbine is rated for 2.5 MW, then at peak wind speed it will crank out 2.5 MW of power.

Yet, we all know that wind is never constant.

wind turbine capacity factor

Because the wind dies down, changes direction, etc., overall averages will be much lower, usually in the 30-40% range for onshore wind turbines and up to 65% (occasionally higher in rare circumstances) for offshore turbines.

Biggest Wind Turbine: GE Haliade-X 12-14.7 MW Turbine

The GE Haliade-X is…insane.

This enormous wind turbine was the first to offer 12 MW capacity, with blades 107m (351 feet) long and an overall footprint that reaches 260m (853 feet) into the sky. The Haliade-X offshore turbine features a range of power rating covering 12-14.7MW capacity. Want to buy one? It will run you $12M – $20Million. See how they’re installed:

<iframe width="1344" height="840" src="https://www.youtube.com/embed/XX2-DE0etcQ" title="Haliade-X offshore wind turbine - installation time lapse" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>

Turbines of this size are typically used offshore, where wind speeds are consistently much higher and delivering power is more complicated. Fewer, bigger turbines = easier power transport, fewer long-distance cables and a simpler overall system.

If you’re curious how these turbines stay upright in the crazy waves and wind out to sea, check out this article featuring some great illustrations.

How Much Money Does a Wind Turbine Produce From Electricity it Generates?

Remember that a wind turbine has a maximum rated capacity (such as 4 megawatts), but it will only produce electricity at a “capacity factor” or “load factor” that is a percentage of this maximum.

In the chart below, you’ll find some numbers based on the typical sale price (2019 data) of electrical power created by wind turbines. This power is sold back to the electrical grid of utility companies, and the price has been falling as turbine technology has improved.

This sale of electricity is how wind turbines pay for themselves and create renewable energy.

We want this power to be cheap, and it’s moving in the right direction.

Wind Turbine Cost: How Much? Are They Worth It in 2025?

The goal is for turbines to produce at a higher capacity factor, which means they’re creating more electricity for the time they’re in operation. A majority wind farms worldwide are heavily subsidized by government investment, however, wind farms in the US and elsewhere in North America operate in a more businesslike manner.

Many US wind farms not only pay private land owners for the use of their land, the energy producers also contribute mightily to the larger community through direct investment in addition to job creation and tax payments. To learn how some US wind farms contribute to their communities, see this brief overview of Wind Farms featured in the Uptime Wind Energy Podcast in 2024.

Need Lightning Protection For Your Wind Turbine?

Our StrikeTape wind turbine segmented lightning diverters are the most durable, highest-performing product in the world. Wind turbine maintenance costs skyrocket when constantly damaged by lightning strikes, so protect your turbines with the best.

Use StrikeTape lightning protection on your wind farm.

More Wind Turbine Questions & Answers

Check out our common wind turbine questions below, including many about wind turbine cost, specifications and more.

If you have a question, leave it below and we’ll update this article with our answer!

The towers on most commercial wind turbines are in the range of 200-260 feet tall. The blades, often well over 100 feet long, when counted in total height push the number well into the 300s. The Gamesa G87 model wind turbine’s blades reach a height of 399ft.

Wind turbine blade tip speeds regularly range from 120-180 miles per hour, though they vary due to wind conditions. Because of their enormous size (with blades well over 100ft), they look like they’re spinning slowly, when in reality blade tip speeds are very, very fast.

$1,300,000 USD per megawatt. The typical wind turbine is 2-3 MW in power, so most turbines cost in the $2-4 million dollar range. Operation and maintenance runs an additional $42,000-$48,000 per year according to research on wind turbine operational cost. See the National Renewable Energy Laboratory’s website for the most recent (December 2022) Cost of Wind Energy Review.

Yes, and these smaller turbines can now cost less than $1000. Energy production will vary greatly to the size, specs and wind conditions of a person’s home, and some homes may not be suited well for a turbine at all. There’s a reason that wind farms are carefully placed in very wind, often harsh conditions–high winds occur in places people often don’t want to live. If your home doesn’t get consistent, strong wind, it may not make financial sense to install any type of wind turbine. New turbine designs are constantly being proposed and tested.

Unfortunately, they sometimes do, but it’s not the largest threat to the bird population. Cats, and cell phone towers, are far more deadly to the bird population. This article sheds light on the issue: https://www.usatoday.com/story/money/business/2014/09/15/wind-turbines-kill-fewer-birds-than-cell-towers-cats/15683843/.

The number can vary greatly due to factors including size, wind conditions, blade length and of course, average home energy consumption. A typical wind turbine is generally capable of powering 1000-2000 homes in one year. One megawatt of energy production capacity will power about 1000 homes, and many onshore wind turbines have a 2-3 MW capacity.

The capacity factor–or load factor–is the actual power generation over time, rather than the theoretical maximum a turbine could produce. Because wind turbines can’t maintain peak production at all times (not even close) due to changing wind conditions, downtime for service, etc. – it’s important to consider capacity factor when calculating the expected power a turbine can produce over a year or more.

Most recent update May 30, 2024. Original article by Dan Blewett published December 20, 2021. Edited by Dan Blewett and Diane Stresing. The most recent and substantive changes since original publication date are noted below.

[1] (New citation, May 2024 update) https://www.windpowermonthly.com/article/1829900/nordex-sells-16gw-wind-turbines-pricing-holds-steady-q2#

  • The largest offshore wind turbines were updated to 18 MW
  • The National Renewable Energy Laboratory’s website was added to the frequently asked questions linking to the most recent (December 2022) Cost of Wind Energy Review.
  • Statistica’s latest figures on the Global Wind Power Market Statistics and Facts were reviewed in 2023 and 2024 when the latest figures available for most stats were based on a report completed 2021, available here. In January 2025, additional information was referenced from the Global Wind Energy Council’s report based on 2023 data.
  • References to recent podcasts and articles have been added.
  • This article may be updated periodically and substantive changes will be noted here.
  • This article was updated on January 5, 2025, to include some of the latest (2024) wind energy analyses and opinions from global data analytics and solution provider Wood Mackenzie
  • This article was previously on September 30, 2024 to include additional complications of breaking down wind turbine costs in various countries due to tariffs, subsidies, and other financial/political differences around the world.

https://weatherguardwind.com/how-much-does-wind-turbine-cost-worth-it/

Continue Reading

Renewable Energy

Trump’s Agenda Is Even Far-Reaching Than People May Think

Published

on

As Trump’s former lawyer Ty Cobb says at left, in addition to turning the United Stated into an autocratic regime, at the same time, Trump needs to alter history such that future generations don’t think he did anything wrong.

Yes, he has his hands full, but he’s assisted by hundreds of traitors in congress, and hundreds of millions of hateful morons in the U.S. electorate.

Trump’s Agenda Is Even Far-Reaching Than People May Think

Continue Reading

Renewable Energy

Victoria’s VEU Scheme Introduces New Solar Incentives for C&I Properties 

Published

on

Exciting opportunity alert for Victorian commercial and industrial sectors! A major energy incentive has
arrived!

The Victorian Energy Upgrades (VEU) program has just rolled out an exciting new activity offering, deemed solar incentives specifically for commercial and industrial (C&I) properties starting from 1 October 2025.

This means easier access to valuable rebates when you install solar systems, accelerating your journey to cleaner, more affordable energy.

Whether you run a factory, office, or retail space, this update could dramatically reduce upfront costs and boost your ROI on solar investments.

So, if you don’t want to miss this game-changing chance to power your business sustainably and save big, keep reading!

Breaking Down the 2025 VEU Changes: Is Your Business Ready to Cash In?

Well, the main goal behind these new solar incentives is to help the commercial properties to reduce energy cost,
lower emissions and most importantly increase electrification in the
commercial sector
.

It’s a part of a broader push by the Victorian Government to accelerate clean energy adoption in the Australian
C&I sector.

Through this program the government offers incentives of up to $35,000 that support the installation of solar PV
systems ranging from 30 kW to 200 kW across the non-residential premises.

Eventually, by generating Victorian Energy
Efficiency Certificates
(VEECs) and combining them with STCs and LGCs, it aims to drive energy efficiency
across Victoria’s business sector.

What Are Deemed Solar Incentives?

“Deemed” solar incentives refer to rebates or energy certificates like VEECs that are calculated upfront based on estimated energy savings over the life of a solar PV system rather than measuring actual savings year by year.

In simple terms, in this incentive program, the government “deems” or assumes how much energy your solar system will save over time and rewards you right away with certificates (VEECs). You can then trade it for either cash or rebates.

How Do These Deemed VEECs Work?

When you install a solar PV system between 30 kW and 200 kW on a commercial or industrial property, the system is assigned a pre-calculated number of VEECs based on its size, expected performance, and energy offset.

These VEECs have a market value, and also the accredited companies, like Cyanergy, can create and trade them for you.

And the best part that creates a difference is that, through these deemed VEECs, we ensure you get substantial upfront savings without waiting years to prove the actual energy savings.

What Makes This a Big Win for C&I Businesses?

  • Easier application process.
  • No complicated monitoring is needed for rebates; here, the savings are estimated in advance.
  • Immediate financial benefit, as there is no waiting time needed for long-term performance data.
  • Stackable with other schemes, such as combining with STCs or LGCs, can bring you even bigger savings from your business.

Top 6 Benefits of Going Solar for C&I Premises

With the government-backed incentives like the VEU program, commercial and industrial (C&I) businesses have
several reasons to make the switch.

Here are the 6 key benefits:

  • Saves Energy Cost

Reduce your business’s electricity bills significantly by generating your own clean power. With VEU incentives, STCs,
and LGCs, upfront installation costs are lowered by up to 30–35%, delivering faster return on investment.

  • Ensure Energy Independence

Adding solar panels protects or shields your business from rising energy prices and grid instability. Incorporating
solar on your premises gives you greater control over your energy use and costs, especially for high-demand
operations.

  • Boost Your Business’s Sustainability & Reputation

Switching to solar directly supports Victoria’s clean energy and sustainability goals by reducing carbon emissions
and dependence on fossil fuels.

In Australia, more and more customers, clients, and stakeholders prefer doing business with companies that support
green initiatives.

So, by investing in solar, you’re not just cutting costs, you’re also enhancing your brand image, thus aligning with
corporate sustainability.

  • Future-Proof Your Business

Commercial solar systems (30 kW to 200 kW) can be custom-designed to match your building, energy usage, and
operational hours, ensuring maximum efficiency and savings.

It future-proofs your business by preparing for growing energy demands and regulations.

  • Increase Property Value

Installing solar can increase your property’s value and appeal, especially for leased commercial spaces and
industrial buildings that seek energy-efficient certifications.

  • Access to Multiple Rebates, More Savings!

C&I businesses can benefit from stacked government incentives, including VEU incentives up to $35,000, STCs for
systems under 100 kW and LGCs for systems over 100 kW.

How Much Can You Save With This New Activity?

Under the 2025 update, eligible businesses can receive VEU incentives of up to $35,000 just for going solar.

As mentioned earlier, these Victorian Energy Efficiency Certificates (VEECs) represent estimated energy savings and can be combined with other financial incentives, like:

  • Small-scale Technology Certificates (STCs)

  • Large-scale Generation Certificates (LGCs)

This stacking of incentives can significantly reduce the upfront cost of a solar installation. For larger system sizes, that’s more than 100kW, this rebate can reduce the price by 30 to 35% or more.

Let’s have a glimpse at the following tables for better understanding!

Small-Scale Commercial Solar Systems (<100 kW)

These are ideal for smaller commercial buildings, offices, and retail spaces looking to cut energy costs with a fast return on investment.

Small-scale systems allow you to stack VEU incentives and STC rebates for immediate savings, with simple installation and faster payback:

Large-Scale Commercial & Industrial Systems (≥100 kW)

These are designed for larger facilities like factories, warehouses, and multi-site operations. These systems deliver serious energy savings and qualify for LGCs in addition to VEECs.

Eligibility Criteria: Do You Qualify for the VEU Solar Incentives?

To qualify for these new VEU solar incentives, your commercial property must meet the eligibility criteria.

So, let’s dive into the requirement list and see how your business can make the most of this exciting new
opportunity:

  • Installation Date: Must start after September 29, 2025
  • System Size: Between 30 kW and 200 kW
  • Location: Non-residential premises only.

For example: warehouses, factories, retail stores, health care centers,
schools, universities, sports facilities or new commercial buildings

  • Accreditation: An accredited company must be engaged to create the certificates.

Special Requirements for Hardware:

  1. Solar Panels and inverters must be approved by the Clean Energy Council.
  2. The panels must have a minimum 10-year product warranty.
  3. Inverters must have a minimum product warranty of 5 years.
  4. For smaller systems under 100 kW, solar panel brands must participate in the Solar Panel Validation Initiative
    (SPVI).
  5. The system must include access to a monitoring portal or regular system performance reports.

Need Assistance? Cyanergy is Here to Help!

When it comes to navigating government incentives and getting the most value out of your solar investment, experience matters the most. And Cyanergy excels at it.

With 10+ years of experience and over 467 successful commercial projects, Cyanergy brings years of proven expertise in renewable energy and commercial solar solutions.

From warehouses and retail stores to offices and manufacturing facilities, we’ve helped many Australian businesses to transition faster to clean, cost-effective, and reliable energy.

Our team understands the unique energy demands of commercial and industrial operations and delivers customized solar systems that maximize savings and performance.

Ready to start your solar journey? Let’s talk.

Cyanergy will guide you through every step, making the process smooth, efficient, and profitable. For the latest updates on VEU programs, keep your eyes on the Cyanergy website!

The post Victoria’s VEU Scheme Introduces New Solar Incentives for C&I Properties  appeared first on Cyanergy.

Victoria’s VEU Scheme Introduces New Solar Incentives for C&I Properties 

Continue Reading

Renewable Energy

Does Evil “Destroy Itself?”

Published

on

What Aristotle said here is interesting, especially since there has been so must of both evil and good through the millennia. The days since Aristotle have been marked by the Golden Age of Rome (Pax Romana), the Dark Ages, the Spanish Inquisition, the Rennaissance, the Enlightenment, the end of slavery, the slaughter of the Native Americans, the post-Emancipation oppression of Black Americans, the Holocaust, and so many more major historical events.

It seems we’re just about to see what happens to the evil represented by Trump’s second term in office.  It seems that the United States has re-elected a man to the highest position on Earth whose only interests are punishing his enemies, enriching himself from public office, further consolidating his power, and keeping himself out of prison.

Will this evil destroy itself?

Again, we’ll have to wait and see.

Does Evil “Destroy Itself?”

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com