Connect with us

Published

on

Weather Guard Lightning Tech

The IEC Standard That’s Costing Wind Farms Millions (And the Industrial Fix That Already Exists)

How proven industrial technology exposed a fundamental flaw in wind turbine lightning protection – and what every wind professional needs to know about it

The Phone Call That Unintentionally Created a Case Study

This scene plays out in O&M buildings across the US from March through November; it starts when an early-morning call comes into the operations center of a large wind farm.

“We’ve got more lightning damage,” the site supervisor reports. “CAT 4 damage, about 15 meters down from the tip. That’s the third one this month.”

“We need to shut it down and call a ropes team.”

When the O&M supervisor pulls up the damage reports from the past year, something doesn’t add up. According to IEC 61400-24 standards – the international specification that governs wind turbine lightning protection – nearly all lightning damage should occur within 2 meters of the blade tip.

But the operational data tells a different story entirely.

wind turbine technicians

The Multi-Million Dollar Problem Nobody’s Talking About

Often, when operators investigate their lightning blade damage, what they find in their data runs contrary to what the experts predict. This is why Weather Guard collects real lightning data from the field.

The examples cited in this study were documented on eight sites in Texas and Oklahoma that we monitored in the summer of 2024. Their GE Vernova turbines, equipped with the industry-standard (IEC standard LPL1 certified) LPS system, had experienced damage patterns that completely contradicted engineering specifications. According to the standards:

  • 71-99% of damage is expected to be seen within 2 meters of the blade tip
  • Only 4% of damage will occur beyond 10 meters from the tip

Here’s what was actually happening:

  • Only 45.6% of damage was within 2 meters of tip
  • 28.5% of damage occurred between 2 and 10 meters from the tip, and
  • 25.9% of damage beyond 10 meters from the tip

That’s a massive increase in the most expensive type of damage, impacting spar caps and shear webs that require $150,000 repairs and months of unanticipated downtime.

What the operations team was seeing wasn’t unusual. Across the industry, wind professionals see the same disturbing patterns, but few understand what the data really shows – and it’s an expensive problem.

How Aerospace Engineers Fixed the Same Problem

While wind turbine manufacturers currently struggle with this problem, aerospace engineers already solved it in other critical applications. Major airplane manufacturers including Boeing, Airbus, Gulfstream, and Embraer have been using an advanced lightning protection solution for years with proven results.

The “secret” solution? StrikeTape Lightning Diverters.

Instead of trying to force lightning to attach at specific points (the wind turbine approach), aerospace engineers guide lightning energy along controlled pathways that protect critical structures.

That’s exactly what StrikeTape does. The same technology that’s proven in aerospace applications has been adapted to provide the same protection for wind turbine blades.

The Study That Shook the Industry

When RWE, the German energy giant, decided to test StrikeTape at one of their US wind farms, they unknowingly initiated one of the most important lightning protection studies in wind energy history.

In 2024, Weather Guard analyzed operational data from eight wind farms across Texas and Oklahoma – all using GE Vernova turbines, all in similar lightning-prone environments. Seven farms used the industry-standard GE Vernova SafeReceptor ILPS protection. One farm in West Texas applied StrikeTape to drive lightning towards the GE Vernova receptor system.

The results were stunning.

StrikeTape-protected site:

  • 74 lightning events
  • 3 damage incidents
  • 4.0% damage rate

Seven conventionally-equipped farms:

  • 2,038 lightning events
  • 415 damage incidents
  • 20.4% average damage rate

StrikeTape achieved an 80.4% reduction in lightning damage compared to the seven nearby wind farms.

While the collected data is dramatic enough to be surprising, the results make sense considering how traditional lightning protection for wind turbines is designed, and why it doesn’t work the way it should.

Why Traditional Lightning Protection Is Fundamentally Flawed

To understand why this matters, let’s walk through how wind turbine lightning protection was developed, and how it currently works.

The SafeReceptor ILPS system, installed on virtually every LM Wind Power blade since 2011, uses a two-receptor approach. The idea is simple: attract lightning to specific points on the blade tip, then conduct the energy safely to ground through insulated pathways. The theory, on paper, is brilliant.

The standard system is:

  • IEC61400-24 Level 1 certified
  • Validated by Germanischer Lloyd
  • Designed from the results of 90,000+ lightning-protected blades
  • Ideally ILPS would intercept >98% of lightning strikes
  • Withstands 200kA strikes

In reality, it’s fallen short. Spectacularly.

Why Traditional Lightning Protection Is Fundamentally Flawed

To understand why this matters, let’s walk through how wind turbine lightning protection was developed, and how it currently works.

The SafeReceptor ILPS system, installed on virtually every LM Wind Power blade since 2011, uses a two-receptor approach. The idea is simple: attract lightning to specific points on the blade tip, then conduct the energy safely to ground through insulated pathways. The theory, on paper, is brilliant.

The standard system is:

  • IEC61400-24 Level 1 certified
  • Validated by Germanischer Lloyd
  • Designed from the results of 90,000+ lightning-protected blades
  • Ideally ILPS would intercept >98% of lightning strikes
  • Withstands 200kA strikes

In reality, it’s fallen short. Spectacularly.

The problem isn’t that the system doesn’t work – it’s that it’s optimized for the wrong type of lightning. Independent research using eologix-ping lightning strike sensors on wind turbines reveals something shocking:

Lightning strikes that cause damage average only -14kA.

These lower-amplitude strikes slip past traditional protection systems and hit blades in structurally critical areas far from the intended attachment points. These strikes cause damage that “doesn’t fit” the type we expect to see, but in fact, makes perfect sense – and costs the industry millions.

The $2.4 Million Math Problem

Let’s talk about what this means in dollars and cents.

Traditional Lightning Protection (Industry Average):

  • Damage rate: 20.4% of lightning events
  • Average cost per incident: $160,000 (repair + downtime)
  • For 100 lightning events: $3,264,000 in damage costs

StrikeTape Protection (RWE Sand Bluff Performance):

  • Damage rate: 4.0% of lightning events
  • Average cost per incident: $160,000
  • For 100 lightning events: $640,000 in damage costs

Net savings: $2,624,000 per 100 lightning events

And here’s the kicker: StrikeTape installs in just 15-30 minutes per blade, requiring no special equipment. It doesn’t void warranties, and regulatory approval is not required.

Field-Proven Success

StrikeTape isn’t an experimental technology; it’s based on lightning protection systems that have proven effective in critical industrial applications.

How StrikeTape Works

Segmented lightning diverters like StrikeTape consist of a series of small metal segments mounted on a flexible, non-conductive substrate with small gaps between each segment. When lightning approaches, the diverter creates an ionized channel in the air above the surface. This channel provides a preferred path for lightning, directing it safely toward the blade’s LPS receptors.

Lightning doesn’t flow through the diverter itself, as it would in a solid conductor, but instead jumps from segment to segment through the air gaps. This “stepping” action through ionized air channels greatly reduces the amount of destructive heat and current that would otherwise pass through the blade structure.

Current industrial users include

  • Boeing
  • Airbus
  • Gulfstream
  • Embraer
  • SpaceX

Instead of trying to outsmart lightning, it gives lightning what it wants: the path of least resistance.

When adapted for wind turbines, StrikeTape installs near the existing tip receptors on both the pressure and suction sides of blades. It doesn’t replace the SafeReceptor system; it makes it work better.

The Industry Leaders Who Have Already Adopted

Word about StrikeTape’s performance is spreading quickly through the wind industry. Major operators are implementing the technology.

US Wind Energy Operators:

  • Ørsted
  • RWE
  • Invenergy
  • American Electric Power (AEP)
  • BHE Renewables
  • NextEra

Turbine Manufacturers:

  • Siemens Gamesa
  • GE Vernova
  • Suzlon

These aren’t companies that take risks with unproven technology. They’re adopting StrikeTape because the technology is proven, and the data is undeniable.

What This Means for Wind Professionals

If you’re managing wind assets, StrikeTape can fundamentally change how you think about lightning risk.

The traditional approach:

  • Trust that IEC 61400-24 certification means real-world performance
  • Accept 20.4% damage rates as “normal”
  • Budget for expensive repairs as a cost of doing business
Striketape LPS aerodynamic test results

The StrikeTape approach:

  • Reduce damage rates to <4.0% with proven technology
  • Save substantial amounts annually on lightning damage
  • Install during routine maintenance windows
  • Benefit from proven industrial reliability

The Uncomfortable Truth About Industry Standards

Here’s what’s really uncomfortable about this story: the industry has been relying on standards that don’t reflect real-world performance.

IEC 61400-24 testing occurs in laboratory conditions with specific strike parameters. But those conditions don’t match what’s actually happening in the field, where lower-amplitude strikes are causing the majority of damage.

The wind industry isn’t unique in this regard. Many industries have experienced similar gaps between laboratory standards and field performance. (The automobile industry perhaps being the most obvious.)

The difference is that wind energy operates in an environment where every failure is expensive, highly visible, and takes a long time to correct.

The Financial Impact That Can’t Be Ignored

The math is compelling. The real question isn’t whether StrikeTape makes financial sense – it’s how quickly you can implement it.

We’re witnessing a fundamental shift in wind turbine lightning protection. The old paradigm of accepting high damage rates as inevitable is giving way to proven industrial solutions that actually work.

What’s Next for Lightning Protection

Early adopters have experienced significant advantages:

  • Reduced lightning damage frequency
  • Lower O&M costs
  • Improved turbine availability
  • Enhanced asset reliability

Meanwhile, operators who rely on traditional protection will continue experiencing the expensive damage patterns that have plagued the industry for years.

  1. Reduced lightning damage frequency
  2. Lower O&M costs
  3. Improved turbine availability
  4. Enhanced asset reliability
  5. What are our actual lightning damage rates vs. our protection system’s claimed performance?
  6. How much are we spending annually on lightning-related repairs and downtime?
  7. Can we afford NOT to implement proven solutions that reduce these costs by over 80%

The data from RWE’s West Texas wind farm provides clear answers. The remaining question – if or when lightning protection standards will change to reflect what we now know – cannot be answered by individual operators. In the meantime, it is up to independent wind professionals to act on this data to protect their assets.

Technical Study Information

Key details of the study are below. Readers who need additional information should contact Weather Guard Lightning Tech.

Study methodology: Analyzed operational data from 8 wind farms (907 total turbines) across Texas and Oklahoma, all operating GE Vernova turbines.

Damage classification: Used industry-standard 5-category system, with Categories 4-5 representing structural damage requiring extensive repairs.

Financial calculations: Based on actual repair costs ($10,000-$150,000) plus business interruption costs ($10,000-$150,000) per incident.

Performance improvement: An 80.4% relative risk reduction, representing significant improvement over conventional protection, was seen on the site with StrikeTape installations. Ongoing field studies have StrikeTape reducing damages by 100% in some cases.

For Additional Information

For a full analysis of this study, or for StrikeTape technical specifications, materials testing data and additional information, contact Weather Guard Lightning Tech.

+1 (413) 217-1139

500 S. Main Street, Mooresville, NC 28115

info@wglightning.com


References

Kelechava, Brad. Standards Supporting Wind Power Industry Growth, ANSI Wind Power, April 23, 2020. Accessed 8/5/2025 at https://blog.ansi.org/ansi/standards-wind-power-growth-turbine-iec-agma/

Myrent, Noah and Haus, Lili. Blade Visual Inspection and Maintenance Quantification Study, Sandia Blade Workshop October 19, 2022.Accessed 8/5/2025 at https://www.sandia.gov/app/uploads/sites/273/2022/11/EPRI-Blade-Maintenance-Quantification-October19_2022-21.pdf Kaewniam, Panida, Cao, Maosen, et al. Recent advances in damage detection of wind turbine blades: A state-of-the-art review, Renewable and Sustainable Energy Reviews, Vol 167, October 2022. Accessed 8/5/2025 at https://www.sciencedirect.com/science/article/abs/pii/S1364032122006128

https://weatherguardwind.com/the-iec-standard-thats-costing-wind-farms-millions-and-the-industrial-fix-that-already-exists/

Continue Reading

Renewable Energy

ACORE Statement on Treasury’s Safe Harbor Guidance

Published

on

ACORE Statement on Treasury’s Safe Harbor Guidance

Statement from American Council on Renewable Energy (ACORE) President and CEO Ray Long on Treasury’s Safe Harbor Guidance:

“The American Council on Renewable Energy (ACORE) is deeply concerned that today’s Treasury guidance on the long-standing ‘beginning of construction’ safe harbor significantly undermines its proven effectiveness, is inconsistent with the law, and creates unnecessary uncertainty for renewable energy development in the United States.

“For over a decade, the safe harbor provisions have served as clear, accountable rules of the road – helping to reduce compliance burdens, foster private investment, and ensure taxpayer protections. These guardrails have been integral to delivering affordable, reliable American clean energy while maintaining transparency and adherence to the rule of law. This was recognized in the One Big Beautiful Act, which codified the safe harbor rules, now changed by this action. 

“We need to build more power generation now, and that includes renewable energy. The U.S. will need roughly 118 gigawatts (the equivalent of 12 New York Cities) of new power generation in the next four years to prevent price spikes and potential shortages. Only a limited set of technologies – solar, wind, batteries, and some natural gas – can be built at that scale in that timeframe.”

###

ABOUT ACORE

For over 20 years, the American Council on Renewable Energy (ACORE) has been the nation’s leading voice on the issues most essential to clean energy expansion. ACORE unites finance, policy, and technology to accelerate the transition to a clean energy economy. For more information, please visit http://www.acore.org.

Media Contacts:
Stephanie Genco
Senior Vice President, Communications
American Council on Renewable Energy
genco@acore.org

The post ACORE Statement on Treasury’s Safe Harbor Guidance appeared first on ACORE.

https://acore.org/news/acore-statement-on-treasurys-safe-harbor-guidance/

Continue Reading

Renewable Energy

Should I Get a Solar Battery Storage System?

Published

on

Frequent power outages, unreliable grid connection, sky-high electricity bills, and to top it off, your solar panels are exporting excess energy back to the grid, for a very low feed-in-tariff. 

Do all these scenarios sound familiar? Your answer might be yes! 

These challenges have become increasingly common across Australia, encouraging more and more homeowners to consider solar battery storage systems. 

Why? Because they want to take control of their energy, store surplus solar power, and reduce reliance on the grid.  

But then again, people often get perplexed, and their biggest question remains: Should I get a Solar Battery Storage System in Australia? 

Well, the answer can be yes in many cases, such as a battery can offer energy independence, ensure better bill savings, and provide peace of mind during unexpected power outages, but it’s not a one-size-fits-all solution.  

There are circumstances where a battery may not be necessary or even cost-effective. 

In this guide, we’ll break down when it makes sense and all the pros and cons you need to know before making the investment.

Why You Need Battery Storage Now?

According to data, Australia has surpassed 3.9 million rooftop solar installations, generating more than 37 GW of PV capacity, which is about 20% of electricity in the National Electricity Market in 2024 and early 2025.  

Undoubtedly, the country’s strong renewable energy targets, sustainability goals, and the clean‑energy revolution have brought solar power affordability, but the next step in self‑reliance is battery storage. 

Data from The Guardian says that 1 in 5 new solar installs in 2025 now includes a home battery, versus 1 in 20 just a few years ago, representing a significant leap in adoption.  

Moreover, the recent launch of the Cheaper Home Batteries program has driven this uptake even further, with over 11,500 battery units installed in just the first three weeks from July 1, and around 1,000 installations per day. 

Overall, the Australian energy market is evolving rapidly. Average household battery size has climbed to about 17 kWh from 10–12 kWh previously.  

Hence, the experts are assuming that 10 GW of new battery capacity will be added over the next five years, competing with Australia’s current coal‑fired capacity.

What Am I Missing Out on Without Solar Batteries?

Honestly? You’re missing out on the best part of going solar. 

Renewable sources of energy like solar, hydro, and wind make us feel empowered. For example, solar batteries lower your electricity bills, minimize grid dependency, and also help to reduce your carbon footprint 

But here’s the catch! Without battery storage, you’re only halfway there! 

The true magic of solar power isn’t just in producing clean energy; it’s storing and using it efficiently.  

A solar battery lets you store excess energy and use it when the sun goes down or the grid goes out. It’s the key to real energy independence. Therefore, ultimately, getting a battery is what makes your solar system truly yours.

Why You Need Battery Storage Now

Here’s a list of what you’re missing out on without a solar battery: 

  1. Energy Independence 
  2. Batteries help you to stay powered even during blackouts or grid failures. With energy storage, you don’t have to think of fuel price volatility and supply-demand disruption in the  Australian energy market. 

  3. Maximized Savings  
  4. Adding a solar battery to your solar PV system allows you to use your own stored energy at night instead of repurchasing it at high rates. It also reduces grid pressure during peak hours, restoring grid stability. 

  5. Better Return on Investment ROI 
  6. Tired of Australian low feed-in-tariff rates 

    Make full use of your solar system by storing excess power at a low price rather than exporting it. Solar panel and battery systems can be a powerful duo for Australian households.  

  7. Lower Carbon Footprint 
  8. Despite the steady growth in solar, wind, and hydro, fossil fuels still dominate the grid. Fossil fuels supplied approximately 64% of Australia’s total electricity generation, while coal alone accounted for around 45%. 

    These stats highlight why solar battery storage is so valuable. By storing surplus solar energy, homeowners can reduce their reliance on a grid that still runs on coal and gas.  

  9. Peace of Mind 
  10. Enjoy 24/7 uninterrupted power, no matter what’s happening outside.  

    Besides powering urban homes and businesses, batteries also provide reliable power backup for off-grid living at night when your solar panel can’t produce, ensuring peace of mind. 

What Size Solar Battery Do I Need?

While choosing the battery size, it isn’t just about picking the biggest one you can afford; it’s about matching your household’s energy consumption pattern. There is no one-size battery that will make financial or functional sense for everyone. 

Nevertheless, if you have an average family of four with no exceptional power demands, you may get by with a 10kWh to 12kWh battery bank as a ready-to-roll backup system.  

Well, this is just an estimation, as we have no idea of your power needs, because selecting a battery is highly subjective to the household in question. 

With that being said, you can get a good idea of how much power you use on average by analyzing your electric bill copy. Also, keeping track of which appliances you use the most and which ones require the most power will help you.  

So, to figure out the ideal battery size for your home, you need to consider three most important things: 

  1. Your Daily Energy Usage

Check your electricity bill for your average daily consumption (in kWh). Most Australian homes use between 15 to 25 kWh per day. 

  1. Your Solar System Output

How much excess solar energy are you generating during the day? That’s the power you’ll store to use later rather than exporting. 

  1. Your Nighttime Power Usage

A battery is most useful at night or during grid outages. So, estimate how much power you typically use after sunset. However, by using a battery, you can also get the freedom of living off the grid. 

Sizing Up: The Ideal Home Battery for Aussies! 

  • For small households and light usage, a 5 kWh battery will be suitable. 
  • For average Australian households, adding a 10 kWh battery would be enough. 
  • Large homes and high-energy users will need a 13 to 15 kWh system. 
  • For full independence, off-grid living, or blackout protection, you may require a larger battery size of 20+ kWh. 

Want help calculating your exact needs? Just drop your daily usage and solar output, and we’ll do the math for you! Cyanergy is here to help!  

Sizing Up: The Ideal Home Battery for Aussies! 

  • For small households and light usage, a 5 kWh battery will be suitable. 
  • For average Australian households, adding a 10 kWh battery would be enough. 
  • Large homes and high-energy users will need a 13 to 15 kWh system. 
  • For full independence, off-grid living, or blackout protection, you may require a larger battery size of 20+ kWh. 

Want help calculating your exact needs? Just drop your daily usage and solar output, and we’ll do the math for you! Cyanergy is here to help! 

How Much Do Solar Batteries Cost?

How Much Do Solar Batteries Cost

Previously, you would have to pay between $3000 and $3600 for the battery alone, plus the cost of installation, for every kWh of solar battery storage.  

However, you can currently expect to pay between $1200 and $1400 for each kWh of solar battery storage. That is a price reduction of approximately 52%, and things will only get better from here. 

Does that imply solar batteries are cheap now? Not really, but the cost is well justified by the pros of having a battery storage system. 

Also, while paying for solar batteries, you have to consider many other factors like the type of battery, your solar panel system configurations and compatibility, brand, and installation partner.  

These will significantly influence the price range of battery storage. 

Is a Solar Battery Worth It | Pros and Cons at a Glance

It’s okay to feel a little overwhelmed while deciding to invest your hard-earned money in a battery.  

So, here we’ve listed the pros and cons of having a solar battery to help you in the decision-making process. 

Benefits of Solar Battery Storage 

  • Solar batteries help you become self-sustaining. 
  • You don’t have to care about power outages anymore 
  • In the event of any natural disaster, you will still have a power source 
  • Battery prices are dropping significantly as we speak 
  • During peak hours, grid electricity prices increase due to high demand; you can avoid paying a high price and use your battery. It’s essentially free energy, as solar generates energy from the sun. 
  • Reduced carbon footprint as the battery stores energy from a renewable source. 

Advantages of battery for the grid and national energy system: 

  • Batteries support Virtual Power Plants (VPPs). In 2025, consumers get financial bonuses (AUD 250‑400) for joining, plus grid benefits via distributed dispatchable power.  
  • Grid‑scale batteries like Victoria Big Battery or Hornsdale Power Reserve are increasing system resilience by storing large amounts of renewable energy and reducing blackout risk. 

Drawbacks of Solar Battery Storage 

  • One of the biggest barriers is that solar batteries have a high upfront cost, which makes installation harder for residents. 
  • Home batteries require physical space, proper ventilation, and can’t always be placed just anywhere, especially in smaller homes or apartments. 
  • Most batteries, like lithium-ion batteries, last 5 to 15 years, meaning they may need replacement during your solar system’s lifetime. 
  • While many systems are low-maintenance, some may require software updates, monitoring, or even professional servicing over time. 
  • Battery production involves mining and processing materials like lithium or lead, which raise environmental and ethical concerns.   

Should You Buy a Solar Battery?: Here’s the Final Call!

You should consider buying a solar battery if several key factors align with your situation.  

First, it’s a strong financial move if you live in a state where federal and state incentives can significantly reduce the upfront cost. This can make the investment far more affordable.  

A solar battery can be especially worthwhile if you value having backup power during outages, lowering your electricity bills, and gaining a measure of energy independence from the grid.  

Additionally, you should be comfortable with taking a few extra steps to get the most value out of your system, such as joining a virtual power plant (VPP), which allows your battery to participate in grid services in exchange for modest returns.  

Finally, it’s worth noting that rebates decline annually, and early adopters get the most value.  

Takeaway Thoughts

Installing a solar battery in Australia in mid‑2025 offers substantial financial, environmental, and energy‑security benefits, especially if you qualify for multiple subsidies and have good solar capacity.  

With rebates shrinking after 2025 and demand surging, early movers stand to benefit most. 

By helping balance the grid and reduce dependence on fossil fuels, home battery adoption contributes significantly to Australia’s national goals of 82% renewable energy by 2030 

It’s not just about savings; it’s about being part of a smarter, cleaner, more resilient electricity future for Australia. 

Looking for CEC-accredited local installers?  

Contact us today for any of your solar needs. We’d be happy to assist!  

Your Solution Is Just a Click Away

The post Should I Get a Solar Battery Storage System? appeared first on Cyanergy.

Should I Get a Solar Battery Storage System?

Continue Reading

Renewable Energy

Wine Grapes and Climate Change

Published

on

I just spoke with a guy in the wine industry, and I asked him how, if at all, climate change is affecting what we does.

From his perspective, it’s the horrific wildfires whose smoke imbues (or “taints”) the grapes with an unpleasant flavor that needs to be modified, normally by creative methods of blending.

Wine Grapes and Climate Change

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com