Connect with us

Published

on

Next month will mark four years since the Indian Point nuclear power plant north of New York City began to be shut down.

Indian Point 2 was closed on April 30, 2020. Indian Point 3’s closure followed a year later. The two units, rated at roughly 1,000 megawatts each, started operating in the mid-1970s. A half-century later, their reactor cores lie dismembered. Both units are irretrievably gone, for better or worse.

I believe the closures are for the worse — and not by a little. The loss of Indian Point’s 2,000 MW of virtually carbon-free power has set back New York’s decarbonization efforts by at least a decade.

I hinted at this in Drones With Hacksaws: Climate Consequences of Shutting Indian Point Can’t Be Brushed Aside, a May 2020 post in the NY-area outlet Gotham Gazette. Soon I grew more outspoken. In two posts for The Nation in April 2022 (here and here) I invoked Indian Point to urge Californians to revoke a parallel plan to close Pacific Gas & Electric’s two-unit Diablo Canyon nuclear plant, which I followed up with a plea to Gov. Gavin Newsom to scuttle the shutdown deal, co-signed by clean-air advocate Armond Cohen and whole-earth avatar Stewart Brand. Which the governor did, last year.

Once I had regarded nuclear plant closures as no big deal. Now I was telling all who would listen that junking high-performing thousand-megawatt reactors on either coast was a monstrous climate crime, the carbon equivalent to decapitating many hundreds of giant wind turbines — a metaphor I employed in my Gotham Gazette post. My turnaround rested on two clear but overlooked points.

One was that nearly all extant U.S. nukes had long ago morphed from chronic inconsistency into rock-solid generators of massive volumes of carbon-free kilowatt-hours, with “capacity factors” reliably hitting 90% or even higher. This positive change should have put to rest the antinuclear movement’s shopworn “aging and unsafe” narrative about our 90-odd operating reactors. It also elevated the plants’ economic and climate value, making politically forced closures far more costly than most of us had imagined.

The other new point is connected to carbon and climate: The effort to have “renewables” (wind, solar and occasionally hydro) fill the hole left from closing Indian Point or other nuclear plants isn’t just tendentious and difficult. Rather, the very construct that one set of zero-carbon generators (renewables) can “replace” another (nuclear) with no climate cost is simplistic if not downright false, as I explain further below.

These new ideas came to mind as I read a major story this week on the consequences of Indian Point’s closure in The Guardian by Oliver Milman, the paper’s longtime chief environment correspondent. To his credit, Milman delved pretty deeply into the impacts of reactor closures — more so than any prominent journalist has done to date. Nonetheless, it’s time for coverage of nuclear closures to go further. To assist, I’ve posted Milman’s story verbatim, with my responses alongside.

A nuclear plant’s closure was hailed as a green win. Then emissions went up.

By Oliver Milman, The Guardian, March 20, 2024

When New York’s deteriorating and unloved Indian Point nuclear plant finally shuttered in 2021, its demise was met with delight from environmentalists who had long demanded it be scrapped.

But there has been a sting in the tail – since the closure, New York’s greenhouse gas emissions have gone up.

Castigated for its impact upon the surrounding environment and feared for its potential to unleash disaster close to the heart of New York City, Indian Point nevertheless supplied a large chunk of the state’s carbon-free electricity.

Guardian graphic using eGRID data for NYCW subregion. The chart’s other half was excised to fit the available space.

Since the plant’s closure, it has been gas, rather then clean energy such as solar and wind, that has filled the void, leaving New York City in the embarrassing situation of seeing its planet-heating emissions jump in recent years to the point its power grid is now dirtier than Texas’s, as well as the US average.

“From a climate change point of view it’s been a real step backwards and made it harder for New York City to decarbonize its electricity supply than it could’ve been,” said Ben Furnas, a climate and energy policy expert at Cornell University. “This has been a cautionary tale that has left New York in a really challenging spot.”

The closure of Indian Point raises sticky questions for the green movement and states such as New York that are looking to slash carbon pollution. Should long-held concerns about nuclear be shelved due to the overriding challenge of the climate crisis? If so, what should be done about the US’s fleet of ageing nuclear plants?

For those who spent decades fighting Indian Point, the power plant had few redeeming qualities even in an era of escalating global heating. Perched on the banks of the Hudson River about 25 miles north of Manhattan, the hulking facility started operation in the 1960s and its three reactors at one point contributed about a quarter of New York City’s power.

It faced a constant barrage of criticism over safety concerns, however, particularly around the leaking of radioactive material into groundwater and for harm caused to fish when the river’s water was used for cooling. Pressure from Andrew Cuomo, New York’s then governor, and Bernie Sanders – the senator called Indian Point a “catastrophe waiting to happen” – led to a phased closure announced in 2017, with the two remaining reactors shutting in 2020 and 2021.

The closure was cause for jubilation in green circles, with Mark Ruffalo, the actor and environmentalist, calling the plant’s end “a BIG deal”. He added in a video: “Let’s get beyond Indian Point.” New York has two other nuclear stations, which have also faced opposition, that have licenses set to expire this decade.

But rather than immediately usher in a new dawn of clean energy, Indian Point’s departure spurred a jump in planet-heating emissions. New York upped its consumption of readily available gas to make up its shortfall in 2020 and again in 2021, as nuclear dropped to just a fifth of the state’s electricity generation, down from about a third before Indian Point’s closure.

This reversal will not itself wreck New York’s goal of making its grid emissions-free by 2040. Two major projects bringing Canadian hydropower and upstate solar and wind electricity will come online by 2027, while the state is pushing ahead with new offshore wind projects – New York’s first offshore turbines started whirring last week. Kathy Hochul, New York’s governor, has vowed the state will “build a cleaner, greener future for all New Yorkers.”

Even as renewable energy blossoms at a gathering pace in the US, though, it is gas that remains the most common fallback for utilities once they take nuclear offline, according to Furnas. This mirrors a situation faced by Germany after it looked to move away from nuclear in the wake of the Fukushima disaster in 2011, only to fall back on coal, the dirtiest of all fossil fuels, as a temporary replacement.

“As renewables are being built we still need energy for when the wind isn’t blowing and the sun isn’t shining and most often it’s gas that is doing that,” said Furnas. “It’s a harrowing dynamic. Taking away a big slice of clean energy coming from nuclear can be a self-inflicted wound from a climate change point of view.”

With the world barreling towards disastrous climate change impacts due to the dawdling pace of emissions cuts, some environmentalists have set aside reservations and accepted nuclear as an expedient power source. The US currently derives about a fifth of its electricity from nuclear power.

Bill McKibben, author, activist and founder of 350.org, said that the position “of the people I know and trust” is that “if you have an existing nuke, keep it open if you can. I think most people are agnostic on new nuclear, hoping that the next generation of reactors might pan out but fearing that they’ll be too expensive.

“The hard part for nuclear, aside from all the traditional and still applicable safety caveats, is that sun and wind and batteries just keep getting cheaper and cheaper, which means the nuclear industry increasingly depends on political gamesmanship to get public funding,” McKibben added.

Wariness over nuclear has long been a central tenet of the environmental movement, though, and opponents point to concerns over nuclear waste, localized pollution and the chance, albeit unlikely, of a major disaster. In California, a coalition of green groups recently filed a lawsuit to try to force the closure of the Diablo Canyon facility, which provides about 8% of the state’s electricity.

“Diablo Canyon has not received the safety upgrades and maintenance it needs and we are dubious that nuclear is safe in any regard, let alone without these upgrades – it’s a huge problem,” said Hallie Templeton, legal director of Friends of the Earth, which was founded in 1969 to, among other things, oppose Diablo Canyon.

Templeton said the groups were alarmed over Diablo Canyon’s discharge of waste water into the environment and the possibility an earthquake could trigger a disastrous leak of nuclear waste. A previous Friends of the Earth deal with the plant’s operator, PG&E, to shutter Diablo Canyon was clouded by state legislation allowing the facility to remain open for another five years, and potentially longer, which Templeton said was a “twist of the knife” to opponents.

“We are not stuck in the past – we are embracing renewable energy technology like solar and wind,” she said. “There was ample notice for everyone to get their houses in order and switch over to solar and wind and they didn’t do anything. The main beneficiary of all this is the corporation making money out of this plant remaining active for longer.”

Meanwhile, supporters of nuclear – some online fans have been called “nuclear bros” – claim the energy source has moved past the specter of Chernobyl and into a new era of small modular nuclear reactors. Amazon recently purchased a nuclear-powered data center, while Bill Gates has also plowed investment into the technology. Rising electricity bills, as well as the climate crisis, are causing people to reassess nuclear, advocates say.

“Things have changed drastically – five years ago I would get a very hostile response when talking about nuclear, now people are just so much more open about it,” said Grace Stanke, a nuclear fuels engineer and former Miss America who regularly gives talks on the benefits of nuclear.

“I find that young people really want to have a discussion about nuclear because of climate change, but people of all ages want reliable, accessible energy,” she said. “Nuclear can provide that.”

The forces that won Indian Point’s closure were blind to the climate cost. 

By Charles Komanoff, Carbon Tax Center, March 23, 2024

New Reality #1: Indian Point wasn’t “deteriorating” when it was closed.

“Deteriorating and unloved” is how Milman characterized Indian Point in his lede. “Unloved?” Sure, though probably no U.S. generating station has been fondly embraced since Woody Guthrie rhapsodized about the Grand Coulee Dam in the 1940s.

But “deteriorating”? How could a power plant on the verge of collapse run for two decades at greater than 90% of its maximum capacity?

Calculations by author from International Atomic Energy Agency data. Diablo Canyon has also averaged over 90% CF since 2000.

Had Indian Point been less productive, the jump in the metropolitan area’s carbon emission rate would have been far less than the apparent 60 percent increase in the Guardian graph at left. Though the “electrify everything” community is loath to discuss it, the emissions surge from closing Indian Point significantly diminishes the purported climate benefit from shifting vehicles, heating, cooking and industry from combustion to electricity .

The impetus for shutting Indian Point largely came through, not from then-Gov. Cuomo.

Milman pins the decision to close Indian Point on NY Gov. Andrew Cuomo and Vermont’s U.S. Senator Bernie Sanders. While Cuomo backed and brokered the deal (which Sanders had nothing to do with), the real push came from a coalition of NY-area environmental activists led by Riverkeeper, who, as he notes, “spent decades fighting Indian Point.” And it was relentless.

The wellsprings of their fight were many, from Cold War fears of anything nuclear to a fierce devotion to the Hudson River ecosystem, which Indian Point threatened not through occasional minor radioactive leaks but via larval striped bass entrainment on the plant’s intake screens. Their fight was of course supercharged by the 1979 Three Mile Island reactor meltdown in Pennsylvania and, later, by the 9/11 hijackers’ Hudson River flight path. But as I pointed out in Gotham Gazette, few shutdown proponents had carbon reduction in their organizational DNA. None had ever built anything, leaving many with a fantasyland conception of the work required to substitute green capacity for Indian Point.

And while the shutdown forces proclaimed their love for wind and solar, their understanding of electric grids and nukes was stuck in the past. To them, Indian Point was Three Mile Island (or Chernobyl) on the Hudson — never mind that by the mid-2010s U.S. nuclear power plants had multiplied their pre-TMI operating experience twenty-fold with nary a mishap.

No, in most anti-nukers’ minds, Indian Point would forever be a bumbling menace incapable of rising above its previous-century average 50% capacity factor (see graph above). Most either ignored the plant’s born-again 90% online mark or viewed it as proof of lax oversight by a co-opted Nuclear Regulatory Commission.

Note too that the “hulking facility,” as Milman termed Indian Point, lay a very considerable 35 air miles from Columbus Circle, rather than “25 miles north of Manhattan,” a figure that references the borough’s uninhabited northern tip. NYC residents had more immediate concerns, leaving fear and loathing over the nukes to be concentrated among the plant’s Westchester neighbors (Cuomo’s backyard). Which raises the question of why in-city environmental justice groups failed to question the shutdown, which is now impeding closure of polluting “peaker” plants in their own Brooklyn, Queens and Bronx backyards.

Still, the shutdown campaigners’ most grievous lapse was their failure to grasp that the new climate imperative requires a radically different conceptual framework for gauging nuclear power.

New Reality #2: Wind and solar that are replacing Indian Point can’t also reduce fossil fuels.

It’s dispiriting to contemplate the effort required to create enough new carbon-free electricity to generate Indian Point’s lost carbon-free output. Think 500 giant offshore wind turbines, each rated at 8 megawatts. (Wind farms need twice the capacity of Indian Point, i.e., 4,000 MW vs. 2,000, to offset their lesser capacity factor.)

What about solar PV? Its capacity disadvantage vis-a-vis Indian Point’s 90% is five- or even six-fold, meaning 10,000 or more megawatts of new solar to replace Indian Point. I won’t even try to calculate how many solar buildings that would require. But this is where Indian Point’s 90% capacity factor is so daunting; had the plant stayed mired at 60%, the capacity ratios to replace it would be a third less steep.

But wait . . . it’s even worse. These massive infusions of wind or solar are supposed to be reducing fossil fuel use by helping the grid phase out gas (methane) fired electricity. Which they cannot do, if they first need to stand in for the carbon-free generation that Indian Point was providing before it was shut.

So when Riverkeeper pledged in 2015-2017, or Friends of the Earth’s legal director told the Guardian‘s Milman that “we are embracing renewable energy technology like solar and wind,” they’re misrepresenting renewables’ capacity to help nuclear-depleted grids cut down on carbon. Shutting a functioning nuclear power plant puts the grid into a deep carbon-reduction hole — one that new solar and wind must first fill, at great expense, before further barrages of turbines and panels can actually be said to be keeping fossil fuels in the ground.

I suspect that not one in a hundred shut-nukes-now campaigners grasps this frame of reference. I certainly didn’t, until one day in April 2020, mere weeks before Indian Point 2 would be turned off, when an activist with Nuclear NY phoned me out of the blue and hurled this new paradigm at me. Before then, I was stuck in the “grid sufficiency” framework that was limited to having enough megawatts to keep everyone’s A/C’s running on peak summer days. The idea that the next giant batch or two of renewables will only keep CO2 emissions running in place rather than reduce them was new and startling. And irrefutably true.

To be clear, I don’t criticize Milman for missing this new paradigm. He’s a journalist, not an analyst or analyst. It’s on us climate advocates to propagate it till it reaches reportorial critical mass.

I credit Milman for giving FoE’s legal director free rein about Diablo. “There was ample notice for everyone to get their houses in order and switch over to solar and wind and they didn’t do anything,” she told him.

Goodness. Everyone [who? California government? PG&E? green entrepreneurs?] didn’t do anything to switch over to solar and wind. Welcome to reality, Friends of the Earth!

I knew FoE’s legendary founder David Brower personally. I and legions of others were inspired in the 1960s and 1970s by his implacable refusal to accede to the world as it was and his monumental determination to build a better one. But reality has its own implacability. The difficulty of bringing actual wind and solar projects (and more energy-efficiency) to fruition has the sad corollary that shutting viable nuclear plants consigns long-sought big blocks of renewables to being mere restorers of the untenable climate status quo.

In closing: Contrary to Milman (and NY Gov. Kathy Hochul), Indian Point’s closure will wreck NY’s goal of an emissions-free grid by 2040.

“Two major projects bringing Canadian hydropower and upstate solar and wind electricity will come online by 2027,” Milman wrote, referencing the Champlain-Hudson Power Express transmission line and Clean Path NY. But their combined annual output will only match Indian Point’s lost carbon-free production. Considering that loss, the two ventures can’t be credited with actually pushing fossil fuels out of the grid. That will require massive new clean power ventures, few of which are on the horizon.

I’ve written about the travails of getting big, difference-making offshore wind farms up and running in New York. I’ve argued that robust carbon pricing could help neutralize the inflationary pressures, supply bottlenecks, higher interest rates and pervasive NIMBY-ism that have led some wind developers to deep-six big projects.

Though I’ve yet to fully “do the math,” my decades adjacent to the electricity industry (1970-1995) and indeed my long career in policy analysis tell me that New York’s grid won’t even reach 80% carbon-free by 2040 unless the state or, better, Washington legislates a palpable carbon price that incentivizes large-scale demand reductions along with faster uptake of new wind, solar and, perhaps, nuclear.

Carbon Footprint

Indonesia Aims to Sell 13.4 Billion Tonnes of Carbon Credits to Global Buyers

Published

on

Indonesia Aims to Sell 13.4 Billion Tonnes of Carbon Credits to Global Buyers

Indonesia plans to sell 13.4 billion tonnes of carbon-dioxide equivalent (CO₂e) credits to global buyers. This is one of the biggest carbon market plans in the world. The government says the move could bring in billions of dollars in investment while helping the country meet its climate goals.

The forestry minister’s announcement comes as more countries and companies look to buy verified carbon credits to offset emissions. Experts estimate the global carbon market could grow to $35 billion by 2030, more than five times its current size. With its large forests and renewable energy projects, Indonesia could become a major supplier of these credits.

Building a Global Carbon Market

The 13.4 billion tonnes of CO₂e credits will come from projects that cut or remove carbon emissions. These include forest protection, peatland restoration, renewable energy, and carbon capture programs.

Indonesia has about 125 million hectares of tropical forest, which absorbs over 25 billion tonnes of CO₂e every year. The government sees carbon trading as a way to earn money while protecting the environment.

Officials say this plan could create tens of thousands of green jobs. It will also attract private funding for conservation and clean energy projects.

The credits will be traded through Indonesia’s national carbon registry, the Sistem Registri Nasional (SRN). This system tracks emissions and removals across industries and projects.

The Rise of Carbon Trading at Home

Indonesia launched its own carbon exchange in 2023 through the Indonesia Stock Exchange (IDX). During its first year, it traded about 500,000 tonnes of CO₂e, worth around $5 million.

By 2024, the country had registered more than 2,000 carbon projects, covering areas like energy, forestry, and manufacturing. The government also started a carbon-pricing system for power plants. Large emitters must now report their emissions and offset some of them through credits.

In 2025, Indonesia reopened carbon trading with other countries under new rules aligned with the Paris Agreement. These rules prevent double-counting of emission cuts and make trading more transparent.

However, local carbon prices remain lower than international ones. Indonesia’s credits often sell for under $20 per tonne, while high-quality global credits range from $40 to $80 per tonne. Officials hope international demand will help raise prices closer to global levels.

The Economic and Climate Impact

If Indonesia sells all 13.4 billion tonnes of credits, they could be worth between $130 billion and $670 billion, depending on the market price. Even selling a fraction of this amount would make Indonesia one of the world’s biggest carbon credit exporters.

The program supports the country’s pledge to cut emissions by almost 32% on its own or 43% with global support by 2030. Indonesia also aims to reach net-zero emissions by 2060.

Indonesias-pathway-to-net-zero-2060
Source: Kearney

Moreover, the country aims to cut emissions by up to 43% by 2030 with international support. Indonesia’s forests and peatlands store large amounts of carbon; protecting them and trading carbon credits can turn this natural resource into income.

At the same time, the country still burns coal for much of its power, so these credits help raise funds for cleaner energy. Revenue from carbon credit sales will support:

  • Forest protection: Deforestation, which once exceeded 1 million hectares per year, has already declined and could fall further.
  • Renewable energy projects: Solar, hydro, and geothermal sources now supply about 14% of Indonesia’s power.
  • Local communities: Landowners who protect forests and wetlands will earn income instead of clearing them for crops.

These projects link environmental goals with economic growth. They help rural areas gain from the green economy. The Southeast Asian nation has the following pillars in cutting emissions. 

Indonesia net zero pathway
Source: Kearney

Big Buyers, Bigger Ambitions

Many large companies are eager to buy reliable carbon credits. Firms like Microsoft, Shell, and Delta Air Lines have pledged to offset emissions through verified carbon projects.

According to BloombergNEF, demand for nature-based credits could rise from 165 million tonnes in 2024 to over 1 billion tonnes by 2030. If Indonesia supplies even 10% of that, it could sell 100 million tonnes each year and earn around $5 billion annually at moderate prices.

Indonesia’s participation will also help balance global supply, which currently depends mostly on Latin America and Africa. A more diverse carbon market could make prices fairer and more stable worldwide.

Per Sylvera’s report, nature-based credits (ARR) price hit a record high in late 2025.  The report shows that buyers are looking for projects that have a verified impact and deliver real results.

carbon credit prices ARR sylvera

Challenges and Verification

Indonesia’s plan faces some key challenges. Experts warn that buyers need strong proof that credits represent real, lasting carbon reductions.

The government is working with certification bodies such as Verra and Gold Standard to verify projects and meet international standards. It will also use digital systems to track every project and transaction.

Some environmental groups worry about “reversal risk.” This happens when forest-based carbon savings are lost later through fires or illegal logging. To prevent this, Indonesia plans to set up a buffer system — keeping some credits in reserve in case of future losses.

The country will also use “corresponding adjustment” rules to ensure every exported credit is subtracted from Indonesia’s national inventory. This keeps its reporting aligned with global accounting standards.

Asia’s Race for Carbon Leadership

The International Energy Agency (IEA) says the world needs to remove or offset 5 to 10 billion tonnes of CO₂ each year by 2050 to meet climate targets. At present, global carbon markets cover less than 1% of that need.

Countries like Indonesia can help fill this gap. The World Bank estimates Southeast Asia could earn $10 billion a year from carbon trading by 2030 if systems are transparent and credible.

Countries like Vietnam and Malaysia are also creating carbon registries. They might open their markets to foreign buyers soon.

Carbon credit exports could make Indonesia a leader in the global green economy. The country could use this income to fund renewable energy, restore ecosystems, and support local livelihoods.

Indonesia’s carbon market potential
Source: PwC

Under government rules, at least 30% of carbon credit revenue must go to local communities and regional governments. This helps support reforestation, sustainable farming, and eco-tourism.

If the plan works, experts say Indonesia could cut up to 2 billion tonnes of CO₂e by 2030. That’s like taking 400 million cars off the road for a whole year.

Promise and Proof: Making Every Credit Count

Indonesia’s offer to sell 13.4 billion carbon credits shows how climate policy and economic growth can work together. The opportunity is huge, but success will depend on strong verification, fair pricing, and transparent reporting.

If done right, the plan could turn Indonesia into one of the top players in the global carbon market. It could also help meet global climate goals while bringing new income to rural areas.

As more nations look for trustworthy carbon credits, Indonesia’s forests and renewables could become valuable global assets. The challenge now is to make sure every credit sold represents real, lasting progress for the planet.

The post Indonesia Aims to Sell 13.4 Billion Tonnes of Carbon Credits to Global Buyers appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Canada Goes Nuclear Again: This Time It’s a C$3 Billion Bet on SMR

Published

on

Canada Goes Nuclear Again and This Time It’s a C$3 Billion Bet on SMR

Canada has taken a major step toward becoming a global leader in nuclear innovation. Prime Minister Mark Carney announced a C$3 billion joint federal-provincial investment to advance small modular reactor (SMR) technology at Ontario Power Generation’s (OPG) Darlington New Nuclear Project (DNNP).

When finished, Canada will be the first G7 nation to launch an SMR. This milestone could change how countries power their economies and reduce emissions. PM Carney remarked:

“The Darlington New Nuclear Project will create thousands of high-paying careers and power thousands of Ontario homes with clean energy. This is a generational investment that will build lasting security, prosperity and opportunities. We’re building big things to build Canada Strong.”

A C$3 Billion Spark for Canada’s Nuclear Comeback

The investment includes $2 billion from the Canada Growth Fund and $1 billion from Ontario’s Building Ontario Fund. Together, they will finance four GE Hitachi BWRX-300 reactors at the Darlington site east of Toronto.

The first reactor is scheduled to start operating by late 2029. When all four are built, the facility will provide 1,200 megawatts (MW) of clean electricity — enough to power 1.2 million homes. Over its lifetime, the project could avoid up to 2.3 million tonnes of CO₂ each year between 2029 and 2050.

The Darlington SMR project can create 18,000 construction jobs and 3,700 permanent positions in operations and supply. It will also inject around $500 million annually into Ontario’s nuclear supply chain once it reaches full capacity.

Government officials say this initiative supports three goals at once: economic growth, energy security, and emissions reduction. Canada aims to boost its power grid through modular nuclear technology. This also supports clean tech manufacturing and export opportunities.

Canada’s SMR Action Plan sets out a national path to develop and deploy small modular reactors across the country. It unites federal and provincial governments, industry, Indigenous communities, research institutions, and utilities under one framework.

The plan aims to help Canada reach net-zero emissions by 2050, decarbonize industry and power generation, and create jobs. It aims to build trust in the community, ensure safe waste management, and boost exports of Canadian SMR technology worldwide.

Why Small Reactors Are a Big Deal

Small modular reactors represent the next generation of nuclear power. Each unit is smaller and easier to build than traditional reactors. The BWRX-300 design, created by GE Hitachi Nuclear Energy, features advanced safety systems. It can be built in factories and then shipped to a site for installation.

SMRs offer several advantages:

  • Lower capital cost: Each module can be built and added in stages.
  • Faster deployment: Factory assembly reduces on-site construction time.
  • Grid flexibility: SMRs can supply remote areas or industrial zones that large plants cannot easily serve.
  • Clean power: They generate consistent electricity without carbon emissions.

READ MORE: What is SMR? The Ultimate Guide to Small Modular Reactors

The Darlington reactors will serve as the flagship for this new model. Experts see it as a test case for how nuclear can complement renewables like wind and solar, especially during periods of low generation.

canada Operable nuclear power capacity
Source: World Nuclear Association

Nicolle Butcher, OPG (the majority owner and operator of DNNP) president and CEO, stated:

“The Darlington New Nuclear Project will help meet growing demand for low-carbon energy, and provide significant economic benefits for Ontarians and Canadians, creating jobs and securing contracts across the province’s robust nuclear supply chain.” 

Strengthening Energy Security and Supply

Electricity demand in Canada is rising quickly. The Canadian Electricity Association estimates that power demand may rise by 40 percent by 2050. This increase is due to electric vehicles, heat pumps, and the growing needs of data centers.

Ontario, in particular, will need more reliable, low-carbon energy as old reactors and natural gas plants close. The province gets about 60% of its electricity from nuclear power. SMRs will help replace this capacity and support net-zero goals.

Federal and provincial leaders say nuclear power is key to balancing the grid. This is especially important as more renewable sources, which vary in output, are added. Unlike solar or wind, SMRs can run 24 hours a day, providing what grid planners call “baseload” or “firm” power.

Economic and Industrial Ripple Effects

Beyond electricity, SMR development supports a broad industrial base. The project will use Canadian engineering, fabrication, and construction skills. These have been developed over six decades of nuclear operations.

The Canadian Nuclear Association states that the nuclear sector supports around 76,000 jobs. It also contributes $17 billion to the GDP every year. The Darlington expansion might boost those numbers even more. It could create a lasting supply chain for SMR parts, fuel, and maintenance.

The new reactors will also use low-enriched uranium fuel sourced and processed domestically. This matches Ottawa’s aim to boost independence in critical minerals and fuels. This is important due to global supply chain risks.

Canada’s Nuclear Edge in a Global Race

Canada’s SMR plan positions it ahead of other major economies. In the United States, NuScale Power is still working on SMR projects. However, cost overruns and cancellations have pushed back its deployment.

Canada reactor plans and proposals
Source: World Nuclear Association

The U.K. is funding a competition to build the first domestic SMR fleet, but commercial operations are not expected before the early 2030s.

If Darlington’s first reactor enters service on schedule in 2029, it will be the first grid-connected SMR in the developed world. Analysts believe that Canada’s early-mover advantage may help it export SMR technology and expertise. This is especially true for countries with smaller or remote grids.

The International Atomic Energy Agency (IAEA) predicts that global nuclear capacity needs to double by 2050. This is essential to reach net-zero targets. SMRs are set to drive significant growth. By 2040, their market value could hit US$120 billion, based on Allied Market Research data. nuclear power capacity additions IAEA projection 2024 to 2050

The Darlington project could help Canada play a major role in the global clean energy market.

Cleaner Power, Smaller Footprint

Each SMR at Darlington will reduce greenhouse gas emissions by replacing fossil fuel generation. When all four reactors are running, the country can save 2.3 million tonnes of CO₂ each year. That’s like taking about 500,000 cars off the road annually.

Canada SMR avoided emissions
Data from IAEA SMR Lifecycle Emissions Benchmarks and OPG Assessments

Unlike large hydro or coal plants, SMRs use much less land and water. Their modular design allows units to be added without major ecosystem disruption. The reactors have passive safety features. This means they can cool themselves in emergencies without needing external power or human help.

From an ESG viewpoint, Canada’s investment shows that nuclear energy is key to reaching net-zero goals. Many international financial institutions now see advanced nuclear as a sustainable asset. This gives investors more confidence to fund new projects.

Industry and Market Reactions

Market analysts and clean energy experts see the Darlington announcement as a sign that nuclear is gaining global attention again. The World Nuclear Association says that over 80 SMR designs are in development globally. More than 30 projects are already being built or are in advanced planning.

Canada’s commitment could attract private capital and accelerate partnerships with firms in the U.S., Europe, and Asia. GE Hitachi has teamed up with Ontario Power Generation, SaskPower, and TVA. They aim to commercialize the BWRX-300 model worldwide.

Economic analysts say success at Darlington could help regional manufacturing hubs in Ontario and Saskatchewan. These areas are also studying new SMR sites.

A Defining Step for Canada’s Clean Energy Future

Investors and regulators will be closely watching the success of this first-of-its-kind SMR. The project’s modular approach means later units could be built faster and at a lower cost. If the model works well, Canada might use it in other provinces. This could boost industrial hubs and clean hydrogen production.

The Darlington SMR investment marks a turning point for Canada’s energy policy. It merges technology, sustainability, and economic growth in a single strategy.

If it works, this initiative could change how countries decarbonize power grids. As the first G7 nation to bring SMRs to market, Canada is both following the clean energy transition and it is helping lead it.

The post Canada Goes Nuclear Again: This Time It’s a C$3 Billion Bet on SMR appeared first on Carbon Credits.

Continue Reading

Carbon Footprint

Google Invests in First Carbon Capture to Power AI and Cut Emissions

Published

on

Google Invests in First Carbon Capture to Power AI and Cut Emissions

Google announced a major new project: it will support a U.S. power plant outfitted with carbon-capture and storage (CCS) technology. The plant, owned by Broadwing Energy in Decatur, Illinois, will capture about 90% of its CO₂ emissions. The tech giant agreed to buy most of the electricity the plant produces.  

By backing this plant, Google aims to help build a reliable, low-carbon power source for its data centers in the U.S. Midwest. It also hopes to speed up the use of CCS technology globally.

The Science of Trapping Carbon: How CCS Works

CCS stands for carbon capture and storage. It involves three main steps:

  • Capture: Pulling CO₂ from a power plant or factory.
  • Transport: Moving the CO₂, often via pipelines.
  • Store: Injecting the CO₂ deep underground where it can’t escape.

This technology is especially important for power plants that burn natural gas or coal. It is also key for factories in heavy industries, like steel and cement, which produce large emissions.

Global experts such as the International Energy Agency (IEA) and the Intergovernmental Panel on Climate Change (IPCC) say CCS will play a major role in reaching climate goals.

CCS operational and planned capacity IEA
Source: IEA

Google’s deal highlights this role. By linking a power plant deal to its own data center needs, the company is showing how big tech can strengthen the clean energy transition.

Inside Google’s Illinois CCS Project

The Illinois plant will be a natural 5gas power facility built by Broadwing Energy. It will capture up to 90% of the CO₂ it produces. Google will buy the bulk of its electricity output.

The plant is sized at more than 400 megawatts (MW). It will include advanced equipment and a large carbon-capture unit. The deal was announced by Google and infrastructure partner I Squared Capital (through its affiliate Low Carbon Infrastructure).

Google said the project will feed power to its data centers in the region, help reduce emissions, and make clean “firm power” (power available around the clock) more affordable. This is important because many renewable sources like wind and solar have variable output.

Google stated:

“Today we’re excited to announce a first-of-its-kind corporate agreement to support a gas power plant with CCS. Broadwing Energy, located in Decatur, Illinois, will capture and permanently store approximately 90% of its CO2 emissions. We hope it will accelerate the path for CCS technology to become more accessible and affordable globally, helping to increase generating capacity while enabling emission reductions.”

How Big is the CCS Market?

The CCS market has grown rapidly. One estimate values it at $8.6 billion in 2024, with a projected annual rate of 16% through 2034. At that pace, the market could reach $51.5 billion by 2034.

CCS market size, by technology 2034

Another estimate places the market size in 2024 at $3.68 billion, with growth to $5.61 billion by 2030. The power generation sector is a major part of the market. One report says 37% of the market was from power generation in 2024.

For data centers and tech companies like Google, CCS offers reliable low-carbon power. Given that global data center emissions may reach 2.5 billion tons of CO₂ through 2030, major tech firms are under pressure to decarbonize.

Experts also project that global CCS capacity will quadruple, reaching around 430 million tonnes of CO₂ per year from today’s 50 million tonnes. Investments of about $80 billion are expected over the next five years. North America and Europe currently lead, holding roughly 80% of growth projects, while China and other regions also scale up.

DNV_CCS_forecast_2050_CCS_uptake_in_selected_regions
Source: DNV

CCS currently addresses only 6% of the emissions needed for net-zero by mid-century. Experts still see it as key for hard-to-decarbonize industries like cement, steel, and hydrogen production.

Breaking New Ground in Clean Firm Power

This is the first time a major tech company has agreed to buy electricity from a power plant using CCS at this commercial scale in the U.S.

The deal brings several important benefits:

  • Google secures “firm” power for its data centers, reducing risks from intermittent renewable supply.
  • CCS gives a path to cut emissions from fossil fuel plants rather than shutting them down entirely.
  • It creates a business model for future CCS deals, making the technology more accessible and scalable.

For Google, the deal advances its goal of running on clean energy and especially 24/7 carbon-free power by 2030. For the broader industry, it sends a signal that large corporations support CCS and are willing to back it financially.

Hurdles Ahead for Carbon Capture

Despite the promise, CCS still faces hurdles. The upfront cost is high, and many projects require government incentives or strong contracts to make economic sense.

Another challenge is scale. According to a 2024 study, CCS capacity by 2030 may reach only 0.07–0.37 gigatonnes (Gt) CO₂ per year, which is just a small part of what’s needed to meet climate goals.

CCS capacity additions 2030
Source: DNV Report

For Google’s project and others like it to succeed, they will need strong regulation, clear carbon pricing, and reliable storage sites. Also, transparency and long-term monitoring are critical to ensure the CO₂ stays underground.

The Illinois plant is a start. If it runs successfully, it could spawn many more projects in power generation and industry. Corporations, utilities, and governments may replicate the model.

The Big Picture: From Data Centers to Decarbonization

Tech companies are building ever-larger data centers to fuel artificial intelligence, cloud computing, and global connectivity. This drives huge electricity demand. Google’s CCS deal shows one way to manage that demand while cutting carbon.

CCS combined with clean power can help sectors that cannot easily switch to renewables. Power plants that run on natural gas or industries like cement and steel may use CCS to reduce emissions.

For Google, the new deal helps it reach its sustainability targets, supports its data-center operations, and sets an example for other firms. The chart below shows the company’s emission reduction progress. For the climate, it offers a template for building low-carbon power systems at scale.

Google carbon emissions 2024
Source: Google

Final Thoughts: A Pivotal Moment for Clean Power

Google’s agreement signals a shift: clean, firm power is becoming a business reality, not just a promise. By backing a CCS-enabled gas power plant, Google is aligning business needs with carbon reduction goals.

The global CCS market is expanding fast. Estimates show billions of dollars flowing into the technology. But scaling remains challenging — cost, policy, and geology all play a role.

If the Illinois plant succeeds, it may influence how corporations, utilities, and governments design power systems in the future. It could help unlock CCS as one of the tools in the broader energy transition toolbox.

The post Google Invests in First Carbon Capture to Power AI and Cut Emissions appeared first on Carbon Credits.

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com