Connect with us

Published

on

 

Cirata Floating Solar Farm, Indonesia

The Cirata Floating Solar Farm in Indonesia overview

The Cirata Floating Solar Farm in Indonesia has a bright outlook, both for immediate impact and long-term potential:

Cirata’s gentle embrace of the Cirata reservoir goes beyond electricity generation. Its shade cools the water, reduces evaporation, and creates a haven for a thriving ecosystem.

By slashing CO2 emissions by 260,000 tons annually, Cirata breathes cleaner air into Indonesia’s lungs and becomes a champion in the fight against climate change

Immediate Impact:

  • Clean Energy Generation: It’s already generating 300 GWh of clean electricity annually, powering around 50,000 households. This significantly reduces reliance on fossil fuels and mitigates greenhouse gas emissions.
  • Economic Boost: The project created jobs during construction and now provides ongoing maintenance and operational opportunities. Additionally, the clean energy it generates can attract businesses and investments, stimulating the local economy.
  • Technological Innovation: Cirata serves as a model for future floating solar projects, demonstrating the technology’s feasibility and adaptability to various water bodies. This can pave the way for wider adoption across Indonesia and beyond.
Cirata Floating Solar Farm, Indonesia
Cirata Floating Solar Farm: A Statistical Deep Dive

Here’s a more specific breakdown of the Cirata Floating Solar Farm’s statistics, delving deeper into its technical aspects and potential impact:

Technical Specifications:

  • Number of solar panels: 340,000
  • Panel type: Monocrystalline silicon (672 cells per panel)
  • Panel tilt angle: Adjustable to maximize sunlight capture
  • Inverter technology: String inverters with maximum power point tracking (MPPT)
  • Anchoring system: High-density polyethylene (HDPE) floats and tensioned mooring lines
  • Communication system: SCADA system for real-time monitoring and control
  • Grid connection: 150 kV transmission line directly connects to the national grid

Environmental Impact:

  • Estimated annual CO2 emission reduction: 260,000 tons
  • Water temperature regulation: Shade from panels can help prevent thermal stratification and improve water quality
  • Reduced evaporation: Panels can potentially minimize water loss from the reservoir

Economic Implications:

  • Job creation: Over 1,000 jobs during construction and ongoing maintenance positions
  • Foreign investment attraction: Showcases Indonesia’s commitment to clean energy, potentially attracting further investment
  • Energy cost reduction: Long-term cost savings compared to fossil fuel-based electricity generation

Future Potential:

  • Phase II expansion: Planned expansion to reach 500 MWp, further increasing clean energy output
  • Replication potential: Serves as a model for future floating solar projects in Indonesia and Southeast Asia
  • Technology advancement: Potential for further innovations in efficiency, materials, and integration with other renewable sources

Additional Statistics:

  • Construction time: 25 months for Phase I
  • Project developer: PT Pembangkit Listrik Tenaga Surya Cirata (a consortium led by PLN and Masdar)
  • Funding sources: World Bank, Asian Development Bank, and private investors

By diving deeper into these specific statistics, we gain a more comprehensive understanding of the Cirata Floating Solar Farm’s impact and potential. It’s not just a collection of numbers; it’s a blueprint for a more sustainable future, powered by clean energy, economic growth, and environmental responsibility.

Cirata Floating Solar Farm, Indonesia

Table of Cirata Floating Solar Farm

Cirata Floating Solar Farm Statistics: A Closer Look

Category Statistic Impact/Benefit
Capacity 192 MWp (operational), expandable to 1,000 MWp Powers 50,000 Indonesian households annually
Energy Generation 300 GWh annually Reduces fossil fuel reliance, mitigates climate change
Area Covered 250 hectares Seamless integration with the reservoir landscape
Technology Monocrystalline silicon panels High efficiency in converting sunlight to electricity
Developers PLN (Indonesia) & Masdar (Abu Dhabi) Collaboration for renewable energy development
Number of Panels 340,000 Large-scale clean energy generation
Panel Type Monocrystalline silicon (672 cells/panel) High efficiency and durability
Anchoring System HDPE floats & tensioned mooring lines Securely anchors panels while minimizing environmental impact
CO2 Emission Reduction 260,000 tons annually Significant contribution to climate change mitigation
Water Temperature Regulation Shade from panels reduces thermal stratification Improves water quality for the reservoir ecosystem
Job Creation 1,000+ during construction & ongoing maintenance Economic stimulation for the region
Phase II Expansion Planned to reach 500 MWp Increased clean energy output and grid stability
Project Timeline 25 months for Phase I Efficient construction and rapid progress
Funding Sources World Bank, Asian Development Bank, & private investors Global support for renewable energy initiatives

This table provides a concise overview of the Cirata Floating Solar Farm’s key statistics, highlighting its impact on energy generation, environment, and economy. The data illustrates the project’s significant contributions to sustainability and its potential for future expansion.

Long-Term Potential:

  • Expansion: The initial 192 MW capacity can be scaled up to 1,000 MWp in the future, further increasing its clean energy output and impact.
  • Renewable Energy Mix: Cirata aligns with Indonesia’s goal of achieving a 23% renewable energy mix by 2025 and net-zero emissions by 2060. Its success can inspire and accelerate the development of other renewable energy projects.
  • Environmental Benefits: Beyond carbon emission reduction, the floating panels can help regulate water temperature and reduce evaporation, benefiting the ecosystem of the Cirata reservoir.

However, some challenges remain:

  • Initial Investment Costs: Floating solar technology can be more expensive than land-based solar due to additional infrastructure needs like anchoring systems.
  • Environmental Impact: Potential concerns include shade impacts on aquatic life and the possibility of microplastics leaching from the panels. Careful monitoring and mitigation strategies are crucial.
  • Grid Integration: Efficiently integrating large-scale renewable energy sources like Cirata into the existing grid infrastructure requires careful planning and upgrades.

The Cirata Floating Solar Farm holds immense promise for Indonesia’s clean energy future. Its success can be a springboard for wider adoption of similar projects, contributing significantly to the country’s renewable energy goals and environmental well-being.

https://www.exaputra.com/2024/01/outlook-of-cirata-floating-solar-farm.html

Renewable Energy

ACORE Statement on Treasury’s Safe Harbor Guidance

Published

on

ACORE Statement on Treasury’s Safe Harbor Guidance

Statement from American Council on Renewable Energy (ACORE) President and CEO Ray Long on Treasury’s Safe Harbor Guidance:

“The American Council on Renewable Energy (ACORE) is deeply concerned that today’s Treasury guidance on the long-standing ‘beginning of construction’ safe harbor significantly undermines its proven effectiveness, is inconsistent with the law, and creates unnecessary uncertainty for renewable energy development in the United States.

“For over a decade, the safe harbor provisions have served as clear, accountable rules of the road – helping to reduce compliance burdens, foster private investment, and ensure taxpayer protections. These guardrails have been integral to delivering affordable, reliable American clean energy while maintaining transparency and adherence to the rule of law. This was recognized in the One Big Beautiful Act, which codified the safe harbor rules, now changed by this action. 

“We need to build more power generation now, and that includes renewable energy. The U.S. will need roughly 118 gigawatts (the equivalent of 12 New York Cities) of new power generation in the next four years to prevent price spikes and potential shortages. Only a limited set of technologies – solar, wind, batteries, and some natural gas – can be built at that scale in that timeframe.”

###

ABOUT ACORE

For over 20 years, the American Council on Renewable Energy (ACORE) has been the nation’s leading voice on the issues most essential to clean energy expansion. ACORE unites finance, policy, and technology to accelerate the transition to a clean energy economy. For more information, please visit http://www.acore.org.

Media Contacts:
Stephanie Genco
Senior Vice President, Communications
American Council on Renewable Energy
genco@acore.org

The post ACORE Statement on Treasury’s Safe Harbor Guidance appeared first on ACORE.

https://acore.org/news/acore-statement-on-treasurys-safe-harbor-guidance/

Continue Reading

Renewable Energy

Should I Get a Solar Battery Storage System?

Published

on

Frequent power outages, unreliable grid connection, sky-high electricity bills, and to top it off, your solar panels are exporting excess energy back to the grid, for a very low feed-in-tariff. 

Do all these scenarios sound familiar? Your answer might be yes! 

These challenges have become increasingly common across Australia, encouraging more and more homeowners to consider solar battery storage systems. 

Why? Because they want to take control of their energy, store surplus solar power, and reduce reliance on the grid.  

But then again, people often get perplexed, and their biggest question remains: Should I get a Solar Battery Storage System in Australia? 

Well, the answer can be yes in many cases, such as a battery can offer energy independence, ensure better bill savings, and provide peace of mind during unexpected power outages, but it’s not a one-size-fits-all solution.  

There are circumstances where a battery may not be necessary or even cost-effective. 

In this guide, we’ll break down when it makes sense and all the pros and cons you need to know before making the investment.

Why You Need Battery Storage Now?

According to data, Australia has surpassed 3.9 million rooftop solar installations, generating more than 37 GW of PV capacity, which is about 20% of electricity in the National Electricity Market in 2024 and early 2025.  

Undoubtedly, the country’s strong renewable energy targets, sustainability goals, and the clean‑energy revolution have brought solar power affordability, but the next step in self‑reliance is battery storage. 

Data from The Guardian says that 1 in 5 new solar installs in 2025 now includes a home battery, versus 1 in 20 just a few years ago, representing a significant leap in adoption.  

Moreover, the recent launch of the Cheaper Home Batteries program has driven this uptake even further, with over 11,500 battery units installed in just the first three weeks from July 1, and around 1,000 installations per day. 

Overall, the Australian energy market is evolving rapidly. Average household battery size has climbed to about 17 kWh from 10–12 kWh previously.  

Hence, the experts are assuming that 10 GW of new battery capacity will be added over the next five years, competing with Australia’s current coal‑fired capacity.

What Am I Missing Out on Without Solar Batteries?

Honestly? You’re missing out on the best part of going solar. 

Renewable sources of energy like solar, hydro, and wind make us feel empowered. For example, solar batteries lower your electricity bills, minimize grid dependency, and also help to reduce your carbon footprint 

But here’s the catch! Without battery storage, you’re only halfway there! 

The true magic of solar power isn’t just in producing clean energy; it’s storing and using it efficiently.  

A solar battery lets you store excess energy and use it when the sun goes down or the grid goes out. It’s the key to real energy independence. Therefore, ultimately, getting a battery is what makes your solar system truly yours.

Why You Need Battery Storage Now

Here’s a list of what you’re missing out on without a solar battery: 

  1. Energy Independence 
  2. Batteries help you to stay powered even during blackouts or grid failures. With energy storage, you don’t have to think of fuel price volatility and supply-demand disruption in the  Australian energy market. 

  3. Maximized Savings  
  4. Adding a solar battery to your solar PV system allows you to use your own stored energy at night instead of repurchasing it at high rates. It also reduces grid pressure during peak hours, restoring grid stability. 

  5. Better Return on Investment ROI 
  6. Tired of Australian low feed-in-tariff rates 

    Make full use of your solar system by storing excess power at a low price rather than exporting it. Solar panel and battery systems can be a powerful duo for Australian households.  

  7. Lower Carbon Footprint 
  8. Despite the steady growth in solar, wind, and hydro, fossil fuels still dominate the grid. Fossil fuels supplied approximately 64% of Australia’s total electricity generation, while coal alone accounted for around 45%. 

    These stats highlight why solar battery storage is so valuable. By storing surplus solar energy, homeowners can reduce their reliance on a grid that still runs on coal and gas.  

  9. Peace of Mind 
  10. Enjoy 24/7 uninterrupted power, no matter what’s happening outside.  

    Besides powering urban homes and businesses, batteries also provide reliable power backup for off-grid living at night when your solar panel can’t produce, ensuring peace of mind. 

What Size Solar Battery Do I Need?

While choosing the battery size, it isn’t just about picking the biggest one you can afford; it’s about matching your household’s energy consumption pattern. There is no one-size battery that will make financial or functional sense for everyone. 

Nevertheless, if you have an average family of four with no exceptional power demands, you may get by with a 10kWh to 12kWh battery bank as a ready-to-roll backup system.  

Well, this is just an estimation, as we have no idea of your power needs, because selecting a battery is highly subjective to the household in question. 

With that being said, you can get a good idea of how much power you use on average by analyzing your electric bill copy. Also, keeping track of which appliances you use the most and which ones require the most power will help you.  

So, to figure out the ideal battery size for your home, you need to consider three most important things: 

  1. Your Daily Energy Usage

Check your electricity bill for your average daily consumption (in kWh). Most Australian homes use between 15 to 25 kWh per day. 

  1. Your Solar System Output

How much excess solar energy are you generating during the day? That’s the power you’ll store to use later rather than exporting. 

  1. Your Nighttime Power Usage

A battery is most useful at night or during grid outages. So, estimate how much power you typically use after sunset. However, by using a battery, you can also get the freedom of living off the grid. 

Sizing Up: The Ideal Home Battery for Aussies! 

  • For small households and light usage, a 5 kWh battery will be suitable. 
  • For average Australian households, adding a 10 kWh battery would be enough. 
  • Large homes and high-energy users will need a 13 to 15 kWh system. 
  • For full independence, off-grid living, or blackout protection, you may require a larger battery size of 20+ kWh. 

Want help calculating your exact needs? Just drop your daily usage and solar output, and we’ll do the math for you! Cyanergy is here to help!  

Sizing Up: The Ideal Home Battery for Aussies! 

  • For small households and light usage, a 5 kWh battery will be suitable. 
  • For average Australian households, adding a 10 kWh battery would be enough. 
  • Large homes and high-energy users will need a 13 to 15 kWh system. 
  • For full independence, off-grid living, or blackout protection, you may require a larger battery size of 20+ kWh. 

Want help calculating your exact needs? Just drop your daily usage and solar output, and we’ll do the math for you! Cyanergy is here to help! 

How Much Do Solar Batteries Cost?

How Much Do Solar Batteries Cost

Previously, you would have to pay between $3000 and $3600 for the battery alone, plus the cost of installation, for every kWh of solar battery storage.  

However, you can currently expect to pay between $1200 and $1400 for each kWh of solar battery storage. That is a price reduction of approximately 52%, and things will only get better from here. 

Does that imply solar batteries are cheap now? Not really, but the cost is well justified by the pros of having a battery storage system. 

Also, while paying for solar batteries, you have to consider many other factors like the type of battery, your solar panel system configurations and compatibility, brand, and installation partner.  

These will significantly influence the price range of battery storage. 

Is a Solar Battery Worth It | Pros and Cons at a Glance

It’s okay to feel a little overwhelmed while deciding to invest your hard-earned money in a battery.  

So, here we’ve listed the pros and cons of having a solar battery to help you in the decision-making process. 

Benefits of Solar Battery Storage 

  • Solar batteries help you become self-sustaining. 
  • You don’t have to care about power outages anymore 
  • In the event of any natural disaster, you will still have a power source 
  • Battery prices are dropping significantly as we speak 
  • During peak hours, grid electricity prices increase due to high demand; you can avoid paying a high price and use your battery. It’s essentially free energy, as solar generates energy from the sun. 
  • Reduced carbon footprint as the battery stores energy from a renewable source. 

Advantages of battery for the grid and national energy system: 

  • Batteries support Virtual Power Plants (VPPs). In 2025, consumers get financial bonuses (AUD 250‑400) for joining, plus grid benefits via distributed dispatchable power.  
  • Grid‑scale batteries like Victoria Big Battery or Hornsdale Power Reserve are increasing system resilience by storing large amounts of renewable energy and reducing blackout risk. 

Drawbacks of Solar Battery Storage 

  • One of the biggest barriers is that solar batteries have a high upfront cost, which makes installation harder for residents. 
  • Home batteries require physical space, proper ventilation, and can’t always be placed just anywhere, especially in smaller homes or apartments. 
  • Most batteries, like lithium-ion batteries, last 5 to 15 years, meaning they may need replacement during your solar system’s lifetime. 
  • While many systems are low-maintenance, some may require software updates, monitoring, or even professional servicing over time. 
  • Battery production involves mining and processing materials like lithium or lead, which raise environmental and ethical concerns.   

Should You Buy a Solar Battery?: Here’s the Final Call!

You should consider buying a solar battery if several key factors align with your situation.  

First, it’s a strong financial move if you live in a state where federal and state incentives can significantly reduce the upfront cost. This can make the investment far more affordable.  

A solar battery can be especially worthwhile if you value having backup power during outages, lowering your electricity bills, and gaining a measure of energy independence from the grid.  

Additionally, you should be comfortable with taking a few extra steps to get the most value out of your system, such as joining a virtual power plant (VPP), which allows your battery to participate in grid services in exchange for modest returns.  

Finally, it’s worth noting that rebates decline annually, and early adopters get the most value.  

Takeaway Thoughts

Installing a solar battery in Australia in mid‑2025 offers substantial financial, environmental, and energy‑security benefits, especially if you qualify for multiple subsidies and have good solar capacity.  

With rebates shrinking after 2025 and demand surging, early movers stand to benefit most. 

By helping balance the grid and reduce dependence on fossil fuels, home battery adoption contributes significantly to Australia’s national goals of 82% renewable energy by 2030 

It’s not just about savings; it’s about being part of a smarter, cleaner, more resilient electricity future for Australia. 

Looking for CEC-accredited local installers?  

Contact us today for any of your solar needs. We’d be happy to assist!  

Your Solution Is Just a Click Away

The post Should I Get a Solar Battery Storage System? appeared first on Cyanergy.

Should I Get a Solar Battery Storage System?

Continue Reading

Renewable Energy

Wine Grapes and Climate Change

Published

on

I just spoke with a guy in the wine industry, and I asked him how, if at all, climate change is affecting what we does.

From his perspective, it’s the horrific wildfires whose smoke imbues (or “taints”) the grapes with an unpleasant flavor that needs to be modified, normally by creative methods of blending.

Wine Grapes and Climate Change

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com