Connect with us

Published

on

written by Jennifer Field, Expedition 395 Onboard Outreach Officer

Expedition 395 scientists gather in Bremen for the sample party.
Expedition 395 scientists gather in Bremen for the sample party.

Five months after the return of Expedition 395, the science team has been reunited with a common goal: collecting approximately 19,000 samples from the cores taken during 395 and 395C. This reunion is delightfully termed a “sample party”. Instead of boutique cocktails and canapés, we have gathered in Bremen, Germany to extract pieces of the cores at precise intervals and locations based on the needs of the scientists. Sample requests were made months ago via a computer program which turned the scientists’ parameters into actual measurements on specific cores. It also recorded the needed volume of the sample and what type of method would be used to extract and package it. The program then created labels and QR codes for every sample. The laboratory technicians then put the labels on bags and organized the bags into batches based on the core. The cores were removed on large trolleys from the refrigerated storage unit and scientists pulled the appropriate core based on the sample bags. Scientists took every sample requested from a core regardless of whether it was for them or not.

Dr. Sid Hemming grins as she holds up a box of bagged-up samples.
Dr. Sidney Hemming

Depending on the research objectives of the scientist, the samples varied in volume and collection method. Dr. Sidney Hemming has four main projects. One of these is to fully explore the benthic stratigraphy from 0-2.5 million years ago; while other scientists from the party are focusing on older samples, Dr. Hemming would like to be able to explain the apparent difference in the rates of accumulation during this time period. To do this, she had samples of 20 ccs taken roughly every four centimeters down the length of the cores during this time period. Dr. Hemming will also try to discover whether or not there is geochemical evidence in the sediments that mark the initiation of glaciation. Another objective of hers is to try to determine what the sand layers that were found in the cores from the east coast of Greenland (site 1602) can indicate about the history of the Greenland margin from the most recent glacial period to the Oligocene (30 my). This may include erosion history, climate changes, previous glaciation, and tectonic changes from the rifting which originally formed the North Atlantic basin. One last interest of hers is to study Glauconite. Glauconite is a mineral found in ocean sediments typically described as being formed in shallow marine environments. Dr. Hemming is unsure of the veracity of this assumption, as the distinct mineral is often found in deep ocean sediments. She hopes to clear up some of the mystery.

Dr. Tom Dunkley-Jones smiles as he hoists a heavy-looking bag of samples.
Dr. Tom Dunkley-Jones

Dr. Tom Dunkley-Jones is researching biomarkers, in the form of alkenones, left by microscopic organisms called coccolithophores. Due to the processing of these samples, they must be protected from the soft plastic sample baggies, which give off similar chemicals during processing. These 20 – 30 cc samples were wrapped in foil before being put into the baggies. Through analyzing these samples, Dr. Dunkley-Jones hopes to look at the long term temperature change in the North Atlantic. Coccolithophores create alkenones (a type of fat) of different saturations depending on the temperature of the water that they are living in. By analyzing the saturation of the alkenones found in the fossilized organisms, a corresponding temperature can be inferred. This information is critical as current climate models are tested on the Pliocene climate and the initial indication is that they have not accurately predicted the ocean temperature. The models have predicted a cooler temperature than what has been found using this proxy data. The data from Expeditions 395 & 395C will add to the strength of the existing data for this time period.

The analysis of samples from these two expeditions will be ongoing for years to come and hopefully will lead to exciting discoveries for the 395 scientists and their colleagues.

It’s more than a party!

Ocean Acidification

What is Coral Bleaching and Why is it Bad News for Coral Reefs?

Published

on

Coral reefs are beautiful, vibrant ecosystems and a cornerstone of a healthy ocean. Often called the “rainforests of the sea,” they support an extraordinary diversity of marine life from fish and crustaceans to mollusks, sea turtles and more. Although reefs cover less than 1% of the ocean floor, they provide critical habitat for roughly 25% of all ocean species.

Coral reefs are also essential to human wellbeing. These structures reduce the force of waves before they reach shore, providing communities with vital protection from extreme weather such as hurricanes and cyclones. It is estimated that reefs safeguard hundreds of millions of people in more than 100 countries. 

What is coral bleaching?

A key component of coral reefs are coral polyps—tiny soft bodied animals related to jellyfish and anemones. What we think of as coral reefs are actually colonies of hundreds to thousands of individual polyps. In hard corals, these tiny animals produce a rigid skeleton made of calcium carbonate (CaCO3). The calcium carbonate provides a hard outer structure that protects the soft parts of the coral. These hard corals are the primary building blocks of coral reefs, unlike their soft coral relatives that don’t secrete any calcium carbonate.

Coral reefs get their bright colors from tiny algae called zooxanthellae. The coral polyps themselves are transparent, and they depend on zooxanthellae for food. In return, the coral polyp provides the zooxanethellae with shelter and protection, a symbiotic relationship that keeps the greater reefs healthy and thriving.

When corals experience stress, like pollution and ocean warming, they can expel their zooxanthellae. Without the zooxanthellae, corals lose their color and turn white, a process known as coral bleaching. If bleaching continues for too long, the coral reef can starve and die.


Ocean warming and coral bleaching

Human-driven stressors, especially ocean warming, threaten the long-term survival of coral reefs. An alarming 77% of the world’s reef areas are already affected by bleaching-level heat stress.

The Great Barrier Reef is a stark example of the catastrophic impacts of coral bleaching. The Great Barrier Reef is made up of 3,000 reefs and is home to thousands of species of marine life. In 2025, the Great Barrier Reef experienced its sixth mass bleaching since 2016. It should also be noted that coral bleaching events are a new thing because of ocean warming, with the first documented in 1998.

Get Ocean Updates in Your Inbox

Sign up with your email and never miss an update.

This field is hidden when viewing the form

Name(Required)







By providing your email address, you consent to receive emails from Ocean Conservancy.
Terms & Conditions and Privacy Policy

This field is hidden when viewing the form
Email Opt-in: Selected(Required)

How you can help

The planet is changing rapidly, and the stakes have never been higher. The ocean has absorbed roughly 90% of the excess heat caused by anthropogenic greenhouse gas emissions, and the consequences, including coral die-offs, are already visible. With just 2℃ of planetary warming, global coral reef losses are estimated to be up to 99% — and without significant change, the world is on track for 2.8°C of warming by century’s end.

To stop coral bleaching, we need to address the climate crisis head on. A recent study from Scripps Institution of Oceanography was the first of its kind to include damage to ocean ecosystems into the economic cost of climate change – resulting in nearly a doubling in the social cost of carbon. This is the first time the ocean was considered in terms of economic harm caused by greenhouse gas emissions, despite the widespread degradation to ocean ecosystems like coral reefs and the millions of people impacted globally.

This is why Ocean Conservancy advocates for phasing out harmful offshore oil and gas and transitioning to clean ocean energy. In this endeavor, Ocean Conservancy also leads international efforts to eliminate emissions from the global shipping industry—responsible for roughly 1 billion tons of carbon dioxide every year.

But we cannot do this work without your help. We need leaders at every level to recognize that the ocean must be part of the solution to the climate crisis. Reach out to your elected officials and demand ocean-climate action now.

The post What is Coral Bleaching and Why is it Bad News for Coral Reefs? appeared first on Ocean Conservancy.

What is Coral Bleaching and Why is it Bad News for Coral Reefs?

Continue Reading

Ocean Acidification

What is a Snipe Eel?

Published

on

From the chilly corners of the polar seas to the warm waters of the tropics, our ocean is bursting with spectacular creatures. This abundance of biodiversity can be seen throughout every depth of the sea: Wildlife at every ocean zone have developed adaptations to thrive in their unique environments, and in the deep sea, these adaptations are truly fascinating.

Enter: the snipe eel.

What Does a Snipe Eel Look Like?

These deep-sea eels have a unique appearance. Snipe eels have long, slim bodies like other eels, but boast the distinction of having 700 vertebrae—the most of any animal on Earth. While this is quite a stunning feature, their heads set them apart in even more dramatic fashion. Their elongated, beak-like snouts earned them their namesake, strongly resembling that of a snipe (a type of wading shorebird). For similar reasons, these eels are also sometimes called deep-sea ducks or thread fish.

Close up of a snipe eel profile in turbid water

How Many Species of Snipe Eel are There?

There are nine documented species of snipe eels currently known to science, with the slender snipe eel (Nemichthys scolopaceus) being the most studied. They are most commonly found 1,000 to 2,000 feet beneath the surface in tropical to temperate areas around the world, but sightings of the species have been documented at depths exceeding 14,000 feet (that’s more than two miles underwater)!

How Do Snipe Eels Hunt and Eat?

A snipe eel’s anatomy enables them to be highly efficient predators. While their exact feeding mechanisms aren’t fully understood, it’s thought that they wiggle through the water while slinging their beak-like heads back and forth with their mouths wide open, catching prey from within the water column (usually small invertebrates like shrimp) on their hook-shaped teeth.

How Can Snipe Eels Thrive So Well in Dark Depths of the Sea?

Snipe eels’ jaws aren’t the only adaptation that allows them to thrive in the deep, either. They also have notably large eyes designed to help them see nearby prey or escape potential predators as efficiently as possible. Their bodies are also pigmented a dark grey to brown color, a coloring that helps them stay stealthy and blend into dark, dim waters. Juveniles are even harder to spot than adults; like other eel species, young snipe eels begin their lives as see-through and flat, keeping them more easily hidden from predators as they mature.

Get Ocean Updates in Your Inbox

Sign up with your email and never miss an update.

This field is hidden when viewing the form

Name(Required)







By providing your email address, you consent to receive emails from Ocean Conservancy.
Terms & Conditions and Privacy Policy

This field is hidden when viewing the form
Email Opt-in: Selected(Required)

How Much Do Scientists Really Know About Snipe Eels?

Residence in the deep sea makes for a fascinating appearance, but it also makes studying animals like snipe eels challenging. Scientists are still learning much about the biology of these eels, including specifics about their breeding behaviors. While we know snipe eels are broadcast spawners (females release eggs into the water columns at the same time as males release sperm) and they are thought to only spawn once, researchers are still working to understand if they spawn in groups or pairs. Beyond reproduction, there’s much that science has yet to learn about these eels.

Are Snipe Eels Endangered?

While the slender snipe eel is currently classified as “Least Concern” on the International Union for the Conservation of Nature’s Red List of Threatened Species, what isn’t currently known is whether worldwide populations are growing or decreasing. And in order to know how to best protect these peculiar yet equally precious creatures, it’s essential we continue to study them while simultaneously working to protect the deep-sea ecosystems they depend on.

How Can We Help Protect Deep-Sea Species Like Snipe Eels?

One thing we can do to protect the deep sea and the wildlife that thrive within it is to advocate against deep-sea mining and the dangers that accompany it. This type of mining extracts mineral deposits from the ocean floor and has the potential to result in disastrous environmental consequences. Take action with Ocean Conservancy today and urge your congressional representative to act to stop deep-sea mining—animals like snipe eels and all the amazing creatures of the deep are counting on us to act before it’s too late.

The post What is a Snipe Eel? appeared first on Ocean Conservancy.

What is a Snipe Eel?

Continue Reading

Ocean Acidification

5 Animals That Need Sea Ice to Thrive

Published

on

Today, we’re getting in the winter spirit by spotlighting five remarkable marine animals that depend on cold and icy environments to thrive.

1. Narwhals

Narwhals are often called the “unicorns of the sea” because of their long, spiraled tusk. Here are a few more fascinating facts about them:

  • Believe it or not, their tusk is actually a tooth used for sensing their environment and sometimes for sparring.
  • Narwhals are whales. While many whale species migrate south in the winter, narwhals spend their entire lives in the frigid waters of the circumpolar Arctic near Canada, Greenland and Russia.
  • Sea ice provides narwhals with protection as they travel through unfamiliar waters.

2. Walruses

Walruses are another beloved Arctic species with remarkable adaptations for surviving the cold:

  • Walruses stay warm with a thick layer of blubber that insulates their bodies from icy air and water.
  • Walruses can slow their heart rate to conserve energy and withstand freezing temperatures both in and out of the water.
  • Walruses use sea ice to rest between foraging dives. It also provides a vital and safe platform for mothers to nurse and care for their young.

Get Ocean Updates in Your Inbox

Sign up with your email and never miss an update.

This field is hidden when viewing the form

Name(Required)







By providing your email address, you consent to receive emails from Ocean Conservancy.
Terms & Conditions and Privacy Policy

This field is hidden when viewing the form
Email Opt-in: Selected(Required)

3. Polar Bears

Polar bears possess several unique traits that help them thrive in the icy Arctic:

4. Penguins

Penguins are highly adapted swimmers that thrive in icy waters, but they are not Arctic animals:

  • Penguins live exclusively in the Southern Hemisphere, mainly Antarctica, meaning they do not share the frigid northern waters with narwhals, walruses and polar bears.
  • Penguins spend up to 75% of their lives in the water and are built for efficient aquatic movement.
  • Sea ice provides a stable platform for nesting and incubation, particularly for species like the Emperor penguin, which relies on sea ice remaining intact until chicks are old enough to fledge.

5. Seals

Seals are a diverse group of carnivorous marine mammals found in both polar regions:

  • There are 33 seal species worldwide, with some living in the Arctic and others in the Antarctic.
  • There are two groups of seals: Phocidae (true seals) and Otariidae (sea lions and fur seals). The easiest way to tell seals and sea lions apart is by their ears: true seals have ear holes with no external flaps, while sea lions and fur seals have small external ear flaps.
  • Seals need sea ice for critical life functions including pupping, nursing and resting. They also use ice for molting—a process in which they shed their fur in the late spring or early summer.

Defend the Central Arctic Ocean Action

Some of these cold-loving animals call the North Pole home, while others thrive in the polar south. No matter where they live, these marine marvels rely on sea ice for food, safety, movement and survival.

Unfortunately, a rapidly changing climate is putting critical polar ecosystems, like the Central Arctic Ocean, at risk. That is why Ocean Conservancy is fighting to protect the Central Arctic Ocean from threats like carbon shipping emissions, deep-sea mining and more. Take action now to help us defend the Central Arctic Ocean.

Learn more

Did you enjoy these fun facts? Sign up for our mobile list to receive trivia, opportunities to take action for our ocean and more!

The post 5 Animals That Need Sea Ice to Thrive appeared first on Ocean Conservancy.

5 Animals That Need Sea Ice to Thrive

Continue Reading

Trending

Copyright © 2022 BreakingClimateChange.com