Connect with us

Published

on

The Amazon isn’t just the world’s greatest rainforest. She has been home to her original people for tens of thousands of years, who have persisted through centuries of colonial incursions to protect their home. At each moment of each day, the Amazon breathes, dances, and sings with an endless variety of plants and animals, many of those we humans have yet to understand. The Amazon is life-giving, irreplaceable and yet profoundly vulnerable.

Here are 10 fascinating facts to inspire you to take action for the Amazon:

Aerial View over Amazon RainForest. © Rogério Assis / Greenpeace
Tapajós river basin, next to Sawré Muybu indigenous land, is home to the Munduruku people, Pará state, Brazil. © Rogério Assis / Greenpeace

1- The Amazon is the largest rainforest in the world

Spanning over nine countries in South America, the Amazon is the largest tropical forest on the planet, covering 6.7 million square kilometres. To put it in perspective, she is twice the size of Indiathe largest country in South Asia. The biggest part, around 60%, is in Brazil. After the Amazon, the Congo Basin and Papua host the world’s largest remaining rainforests.

2- The Amazon is one of the most biodiverse ecosystems on Earth

The Amazon is home to approximately 10% of all known species of fauna and flora worldwide. From the beautiful hyacinth macaws to fearless jaguars and the amazing pink dolphins, this vibrant ecosystem is teeming with life. In some areas, a single hectare can contain more than 300 tree species, approximately two-thirds of the native tree species in Europe (454), making the Amazon one of the most botanically rich regions on Earth.

Studies show that the Amazon Basin harbours at least 2,716 species of fish, 427 amphibians, 371 reptiles, 1,300 birds, and 425 mammals. However, the vast majority of its biodiversity lies in her invertebrates, particularly insects, with over 2.5 million species currently known

Munduruku and Greenpeace Demarcate Indigenous Lands in the Amazon. © Anderson Barbosa / Greenpeace
Two Munduruku boys walk along a river while holding spears. The Munduruku people have inhabited the Sawré Muybu in the heart of the Amazon, for generations. © Anderson Barbosa / Greenpeace

3- There are approximately 3 million Indigenous People living in the Amazon

The Amazon is home to a diverse group of Indigenous Peoples. Over 390 Indigenous Peoples live in the region, along with approximately 137 isolated groups, who have chosen to remain uncontacted.

In Brazil, about 51.2% of the country’s Indigenous population resides in the Amazon. But the largest tropical forest in the world is also home to traditional communities that have lived in harmony with the forest for generations, such as Rubber Tappers, Ribeirinhos—who inhabit the Amazon’s riverbanks—and Quilombolas, Afro-Brazilian communities descended from enslaved people..

4- The Amazon is home to over 40 million people

The Amazon is not just a vast rainforest rich in biodiversity and home to Indigenous People—it is also home to several cities. In Brazil, These include Manaus , an industrial hub with a population of 2.2 million, and Belém , which will host the United Nations Climate Conference (COP30) in November 2025.

These people’s lives are intrinsically connected to the forest. They depend on her for their food, fresh water, and to regulate the local climate. Smoke from the fires in the Amazon directly impacts the people living in the region, darkening the skies and causing respiratory problems to the population, especially children and elders.

Scorched Earth in the Capoto-Jarina Indigenous Territory  in the Amazon. © Marizilda Cruppe / Greenpeace
Indigenous Territories in the Amazon are facing a devastating combination of extreme drought and forest fires, driven by the intensification of climate change and criminal activities from illegal mining and other exploitative actions. © Marizilda Cruppe / Greenpeace

5- The Amazon is vital for the global climate

The Amazon is estimated to store about 123 billion tons of carbon, both above and below ground, making her one of Earth’s most crucial “carbon reserves”, vital in the fight against the climate crisis. However, studies show that fire- and deforestation-affected areas of the Amazon are now releasing more CO₂ into the atmosphere than they absorb. This poses a major threat to the global climate. Protecting the Amazon means protecting the future of everyone.

6- Fires in the Amazon are not natural

Unlike bushfires in Australia and other parts of the world, fires in the Amazon are not natural. In the Amazon biome, fire is used in the deforestation process to clear the land for agriculture and pasture. The use of fire in the Amazon is often illegal, and so is deforestation. This practice has a major impact on the local biodiversity, the health of the populations living in the region, and to the global climate, as the fires release vast amounts of carbon into the atmosphere.

Fire Monitoring in the Amazon in Brazil in September, 2021. © Victor Moriyama / Amazônia em Chamas
Cattle in a ranching area, next to a recently deforested and burnt area, in Candeias do Jamari, Rondônia state.
© Victor Moriyama / Amazônia em Chamas

7- Cattle ranching is the leading cause of deforestation in the Amazon

The expansion of agribusiness in the Amazon is putting more and more pressure on the forest. According to a study, 90% of the deforested areas in the Brazilian Amazon are turned into pasture to produce meat and dairy. This means the food we eat may be linked to deforestation in the Amazon. We must urge our governments to stop buying from forest destroyers and ensure supply chains are free from deforestation, and demand stronger protections for the Amazon.

8- Illegal gold mining is a major threat to Indigenous Peoples

Illegal gold mining in Indigenous Lands in Brazil surged by 265% in just five years, between 2018 and 2022. The activity poses a severe threat to the health and the lives of Indigenous People, destroying rivers, contaminating communities with mercury and bringing violence and death to their territories.

But illegal gold mining doesn’t impact just the forest and Indigenous People. A recent study showed that mercury-contaminated fish are being sold in markets in major Amazonian cities, putting the health of millions at risk.

Illegal Mining in the Sararé Indigenous Land in the Amazon. © Fabio Bispo / Greenpeace
The Sararé Indigenous Land, home to the Nambikwara people. Mining continues to expand and make the Nambikwara way of life unviable, ignoring the right of this population to live according to their customs and traditions. © Fabio Bispo / Greenpeace

9- The Amazon is close to a point of no return

About 17% of the Amazon has already been deforested, and scientists warn we are getting dangerously close to a ‘point of no return’.

According to a study, if we lose between 20% and 25% of the Amazon, the forest might lose its ability to generate its own moisture, leading to reduced rainfall, higher temperatures, and a self-reinforcing cycle of drying and degradation.

As a result, vast areas of the forest could turn into a drier, savanna-like ecosystem, unable to sustain her rich biodiversity. This could have catastrophic consequences for the global climate, local communities, and the planet’s ecological balance.

10- The most important Climate Conference in the world is happening in the Amazon this year

COP30, the United Nations Climate Conference, will take place in Belém, the second largest city in the Amazon region, in November 2025. During the conference, representatives from countries all over the world will meet to discuss measures to protect the climate. Across the globe, we are already witnessing and feeling the impacts of the climate crisis. This is our chance to demand our political leaders move beyond words to urgent action. They must stop granting permission and public funds to Earth-destroying industries. Instead, our leaders must respect, pursue, and support real solutions that already exist—solutions that put the forest and her people at the heart of the response. Indigenous guardians of the forest hold true authority, and they must be respected and heard. The moment is now.

We are the turning point! Join the movement and demand respect for the Amazon.

10 reasons why we need to act for the Amazon

Continue Reading

Climate Change

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Published

on

Weather disasters are shared experiences in the Maine foothills and communities are preparing for a wetter, warmer future.

The December 2023 flood. The 2022 Halloween storm. The Patriots Day storm of 2007. The Great Ice Storm of 1998.

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Continue Reading

Climate Change

Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

Published

on

In Kenya’s Laikipia County where temperatures can reach as high as 30 degrees Celsius, a local building technology is helping homes stay cooler while supporting education, creating jobs and improving the livelihoods and resilience of community residents, Climate Home News found on a visit to the region.

Situated in a semi-arid region, houses in Laikipia are mostly built with wood or cement blocks with corrugated iron sheets for roofing. This building method usually leaves the insides of homes scorching hot – and as global warming accelerates, the heat is becoming unbearable.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, lived in these harsh conditions until 2023, when the Laikipia Integrated Housing Project began in his community.

Nine of our best climate stories from 2025

The project uses compressed earth block (CEB) technology, drawing on traditional building methods and local materials – including soil, timber, grass and cow dung – to keep buildings cool in the highland climate. The thick earth walls provide insulation against the heat.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

“Especially around the months of September all the way to December, it is very, very hot [in Laikipia], but as you might have noticed, my house is very cool even during the heat,” Muthui told Climate Home News.

His school has also deployed the technology for classrooms and boarding hostels to ensure students can carry on studying during the hottest seasons of the year. This way, they are protected from severe conditions and school closures can be avoided. In South Sudan, dozens of students collapsed from heat stroke in the capital Juba earlier this year, causing the country to shutter schools for weeks.

COP30 sees first action call on sustainable, affordable housing

The buildings and construction sector accounts for 37% of global emissions, making it the world’s largest emitter of greenhouse gases, according to the UN Environment Programme (UNEP). While calls to decarbonise the sector have grown, meaningful action to cut emissions has remained limited.

At COP28 in Dubai, the United Arab Emirates and Canada launched the Cement and Concrete Breakthrough Initiative to speed up investment in the technologies, policies and tools needed to put the cement and concrete industry on a net zero-emissions path by 2050.

Canada’s innovation minister, François-Philippe Champagne, said the initiative aimed to build a competitive “green cement and concrete industry” which creates jobs while building a cleaner future.

    Momentum continued at COP30, where the Intergovernmental Council for Buildings and Climate (ICBC) held its first ministerial meeting and adopted the Belém Call for Action for Sustainable and Affordable Housing.

    Coordinated by UNEP’s Global Alliance for Buildings and Construction, the council has urged countries to embed climate considerations into affordable housing from the outset, “ensuring the drive to deliver adequate homes for social inclusion goes hand in hand with minimising whole-life emissions and
    environmental impacts”.

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    With buildings responsible for 34% of energy-related emissions and 32% of global energy demand, and 2.8 billion people living in inadequate housing, the ICBC stressed that “affordable, adequate, resource-efficient, low-carbon, climate-resilient and durable housing is essential to a just transition, the achievement of the Sustainable Development Goals and the effective implementation of the Paris Agreement”.

    Compressed earth offers local, green alternative

    By using locally sourced materials, and just a little bit of cement, the compressed earth technology is helping residents in Kenya’s Laikipia region to build affordable, climate-smart homes that reduce emissions and environmental impacts while creating economic opportunities for local residents, said Dacan Aballa, construction manager at Habitat for Humanity International, the project’s developers.

    Aballa said carbon emissions in the construction sector occur all through the lifecycle, from material extraction, processing and transportation to usage and end of life. However, by switching to compressed earth blocks, residents can source materials available in their environment, avoiding nearly all of that embedded carbon pollution.

    According to the World Economic Forum (WEF), global cement manufacturing is responsible for about 8% of total CO2 emissions, and the current trajectory would see emissions from the sector soar to 3.8 billion tonnes per year by 2050 – a level that, compared to countries, would place the cement industry as one of the world’s top three or four emitters alongside the US and China.

    Tripling adaptation finance is just the start – delivery is what matters

    Comparing compressed earth blocks and conventional materials in terms of carbon emissions, Aballa said that by using soil native to the area, the process avoids the fossil fuels that would normally have been used for to produce and transport building materials, slashing carbon and nitrogen dioxide emissions.

    The local building technology also helps save on energy that would have been used for cooling these houses as well as keeping them warm during colder periods, Aballa explained.

    Justin Atemi, water and sanitation officer at Habitat for Humanity, said the brick-making technique helps reduce deforestation too. This is because the blocks are left to air dry under the sun for 21 days – as opposed to conventional fired-clay blocks that use wood as fuel for kilns – and are then ready for use.

    Women walk passed houses in the village of Kangimi, Kaduna State, Nigeria (Photo: Sadiq Mustapha)

    Traditional knowledge becomes adaptation mechanism

    Africa’s red clay soil was long used as a building material for homes, before cement blocks and concrete became common. However, the method never fully disappeared. Now, as climate change brings higher temperatures, this traditional building approach is gaining renewed attention, especially in low-income communities in arid and semi-arid regions struggling to cope with extreme heat.

    From Kenya’s highlands to Senegal’s Sahelian cities, compressed earth construction is being repurposed as a low-cost, eco-friendly option for homes, schools, hospitals – and even multi-storey buildings.

    Senegal’s Goethe-Institut in Dakar was constructed primarily using compressed earth blocks. In Mali, the Bamako medical school, which was built with unfired mud bricks, stays cool even during the hottest weather.

    And more recently, in Nigeria’s cultural city of Benin, the just-finished Museum of West African Art (MOWA) was built using “rammed earth” architecture – a similar technology that compresses moist soil into wooden frames to form solid walls – making it one of the largest such structures in Africa.

    The post Earth blocks keep homes cool while cutting emissions in Kenya’s drylands appeared first on Climate Home News.

    Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

    Continue Reading

    Climate Change

    Using energy-hungry AI to detect climate tipping points is a paradox

    Published

    on

    David Sathuluri is a Research Associate and Dr. Marco Tedesco is a Lamont Research Professor at the Lamont-Doherty Earth Observatory of Columbia University.

    As climate scientists warn that we are approaching irreversible tipping points in the Earth’s climate system, paradoxically the very technologies being deployed to detect these tipping points – often based on AI – are exacerbating the problem, via acceleration of the associated energy consumption.

    The UK’s much-celebrated £81-million ($109-million) Forecasting Tipping Points programme involving 27 teams, led by the Advanced Research + Invention Agency (ARIA), represents a contemporary faith in technological salvation – yet it embodies a profound contradiction. The ARIA programme explicitly aims to “harness the laws of physics and artificial intelligence to pick up subtle early warning signs of tipping” through advanced modelling.

    We are deploying massive computational infrastructure to warn us of climate collapse while these same systems consume the energy and water resources needed to prevent or mitigate it. We are simultaneously investing in computationally intensive AI systems to monitor whether we will cross irreversible climate tipping points, even as these same AI systems could fuel that transition.

    The computational cost of monitoring

    Training a single large language model like GPT-3 consumed approximately 1,287 megawatt-hours of electricity, resulting in 552 metric tons of carbon dioxide – equivalent to driving 123 gasoline-powered cars for a year, according to a recent study.

    GPT-4 required roughly 50 times more electricity. As the computational power needed for AI continues to double approximately every 100 days, the energy footprint of these systems is not static but is exponentially accelerating.

    UN adopts first-ever resolution on AI and environment, but omits lifecycle

    And the environmental consequences of AI models extend far beyond electricity usage. Besides massive amounts of electricity (much of which is still fossil-fuel-based), such systems require advanced cooling that consumes enormous quantities of water, and sophisticated infrastructure that must be manufactured, transported, and deployed globally.

    The water-energy nexus in climate-vulnerable regions

    A single data center can consume up to 5 million gallons of drinking water per day – sufficient to supply thousands of households or farms. In the Phoenix area of the US alone, more than 58 data centers consume an estimated 170 million gallons of drinking water daily for cooling.

    The geographical distribution of this infrastructure matters profoundly as data centers requiring high rates of mechanical cooling are disproportionately located in water-stressed and socioeconomically vulnerable regions, particularly in Asia-Pacific and Africa.

    At the same time, we are deploying AI-intensive early warning systems to monitor climate tipping points in regions like Greenland, the Arctic, and the Atlantic circulation system – regions already experiencing catastrophic climate impacts. They represent thresholds that, once crossed, could trigger irreversible changes within decades, scientists have warned.

    Nine of our best climate stories from 2025

    Yet computational models and AI-driven early warning systems operate according to different temporal logics. They promise to provide warnings that enable future action, but they consume energy – and therefore contribute to emissions – in the present.

    This is not merely a technical problem to be solved with renewable energy deployment; it reflects a fundamental misalignment between the urgency of climate tipping points and the gradualist assumptions embedded in technological solutions.

    The carbon budget concept reveals that there is a cumulative effect on how emissions impact on temperature rise, with significant lags between atmospheric concentration and temperature impact. Every megawatt-hour consumed by AI systems training on climate models today directly reduces the available carbon budget for tomorrow – including the carbon budget available for the energy transition itself.

    The governance void

    The deeper issue is that governance frameworks for AI development have completely decoupled from carbon budgets and tipping point timescales. UK AI regulation focuses on how much computing power AI systems use, but it does not require developers to ask: is this AI’s carbon footprint small enough to fit within our carbon budget for preventing climate tipping points?

    There is no mechanism requiring that AI infrastructure deployment decisions account for the specific carbon budgets associated with preventing different categories of tipping points.

    Meanwhile, the energy transition itself – renewable capacity expansion, grid modernization, electrification of transport – requires computation and data management. If we allow unconstrained AI expansion, we risk the perverse outcome in which computing infrastructure consumes the surplus renewable energy that could otherwise accelerate decarbonization, rather than enabling it.

      What would it mean to resolve the paradox?

      Resolving this paradox requires, for example, moving beyond the assumption that technological solutions can be determined in isolation from carbon constraints. It demands several interventions:

      First, any AI-driven climate monitoring system must operate within an explicitly defined carbon budget that directly reflects the tipping-point timescale it aims to detect. If we are attempting to provide warnings about tipping points that could be triggered within 10-20 years, the AI system’s carbon footprint must be evaluated against a corresponding carbon budget for that period.

      Second, governance frameworks for AI development must explicitly incorporate climate-tipping point science, establishing threshold restrictions on computational intensity in relation to carbon budgets and renewable energy availability. This is not primarily a “sustainability” question; it is a justice and efficacy question.

      Third, alternative models must be prioritized over the current trajectory toward ever-larger models. These should include approaches that integrate human expertise with AI in time-sensitive scenarios, carbon-aware model training, and using specialized processors matched to specific computational tasks rather than relying on universal energy-intensive systems.

      The deeper critique

      The fundamental issue is that the energy-system tipping point paradox reflects a broader crisis in how wealthy nations approach climate governance. We have faith that innovation and science can solve fundamental contradictions, rather than confronting the structural need to constrain certain forms of energy consumption and wealth accumulation. We would rather invest £81 million in computational systems to detect tipping points than make the political decisions required to prevent them.

      The positive tipping point for energy transition exists – renewable energy is now cheaper than fossil fuels, and deployment rates are accelerating. What we lack is not technological capacity but political will to rapidly decarbonize, as well as community participation.

      IEA: Slow transition away from fossil fuels would cost over a million energy sector jobs

      Deploying energy-intensive AI systems to monitor tipping points while simultaneously failing to deploy available renewable energy represents a kind of technological distraction from the actual political choices required.

      The paradox is thus also a warning: in the time remaining before irreversible tipping points are triggered, we must choose between building ever-more sophisticated systems to monitor climate collapse or deploying available resources – capital, energy, expertise, political attention – toward allaying the threat.

      The post Using energy-hungry AI to detect climate tipping points is a paradox appeared first on Climate Home News.

      Using energy-hungry AI to detect climate tipping points is a paradox

      Continue Reading

      Trending

      Copyright © 2022 BreakingClimateChange.com