Connect with us

Published

on

It’s the start of the second and final week of the annual mid-year UN climate talks, half-way between COPs, which take place every year in Bonn – the old capital of West Germany and the birthplace of Beethoven.

As the 8,000 or so delegates make their way to the World Conference Centre, next to the River Rhine and UN Climate Change’s tower block headquarters, Joe Lo and Matteo Civillini are headed there on the Eurostar thanks to your generous donations!

The first week of the talks passed off relatively smoothly – despite leaving a fair amount of work to finish by Thursday, the last day of the so-called SB60 meetings. Last year, it took nine days and desperate pleading to even agree on an agenda. This year, that was wrapped up without fuss on the opening morning.

That’s not to say there was no drama. At the start of the opening plenary, the head of Climate Action Network (CAN) International Tasneem Essop and Argentine climate justice activist Anabella Rosemberg – got up on stage uninvited.

Essop held up a Palestine flag and Rosemberg a sign saying “No B.A.U. [business as usual] during a genocide”. Both said they were doing it in a personal capacity, rather than as a part of CAN.

After the session was briefly suspended, they were escorted off the stage and out of the venue by UN security. The badges needed to access the talks were taken off them.

video of the incident shows the camerawoman – CAN press officer Danni Taafe – telling a UN security guard “you’re hurting me”. He replies “good”. Taafe told Climate Home she has asked the UNFCCC how to file a complaint but has yet to receive a response.

Anabella Rosemberg and Tasneem Essop protest at the opening plenary (Photo: Kiara Worth/IISD ENB)

Shortly after the session re-started, the Russian government said it would block the agenda in protest at some of its delegation not receiving visas from the German government.

After some frantic phone calls to the German foreign office, the talks’ co-chairs received assurances that the visas were being sorted ASAP and the Russians agreed to resume.

Climate Home has heard from three sources that visa issues are not limited to the Russians and that some African delegates – both from government and civil society – had not received their visas either, or only did so after a lot of stress.

CAN Uganda’s Proscovier Nnanyonjo Vikman told Climate Home she arrived five days late and had to rebook her flight because of visa delays. She said the talks should be moved away from Germany to a place everyone can access.

“We don’t need to die coming to Bonn – let’s move” she said, adding that many feel “they are being harassed to enter a country that obviously doesn’t like them”.

Finance negotiators wear pink to show commitment to gender-inclusive financing on June 8, 2024 (Photo: IISD/ENB Kiara Worth)

Money talks

With the agenda adopted last Monday, negotiators on the post-2025 finance goal – known as the New Collective Quantified Goal (NCQG) – started exchanging opinions on a 63-page draft text.  

At this early stage – with the NCQG due to be agreed at COP29 in Baku in November – many countries are keeping suggestions on specific figures close to their chest, particularly as the UN is due to release a needs determination report in October which will offer guidance.

But the Arab Group has put forward a figure of $1.1 trillion a year from 2025 to 2029. Of this, $441 billion should be public grants and the rest should be money mobilised from other sources, including loans offered at rates cheaper than the market.

The group, backed on this by the G77+China, has even suggested how developed countries could raise that sum – through a 5% sales tax on developed countries’ fashion, tech and arms companies – plus a financial transaction tax.

Military emissions account for 5% of the global total, said Saudi Arabia’s negotiator. This surprised many observers, as Saudi Arabia is the world’s fourth-biggest per capita spender on the military and gets much of its equipment from Western arms companies.

But developed countries insist they can’t stump up all the money and are asking for help. The EU’s negotiator said the NCQG should be a “global effort” while Canada’s said it should come from a “broad set of contributors”. In other words, wealthier and more polluting developing nations like the Gulf nations should also play their part.

But developing countries remain, at least publicly, united against these attempts to differentiate between them. They say developed countries have the money – it’s just a question of whether they have the “political will to prioritise climate change”.

The other emerging divide is whether to include a sub-target for loss and damage in the NCQG. Developing countries want this but developed countries are opposed.

Asked why, the EU’s negotiator told Climate Home the Paris Agreement “does not provide any basis for liability or compensation”, and that climate finance under the NCQG should consist only of two categories: mitigation and adaptation.

The talks’ co-chairs – Australian Fiona Gilbert and South African Zaheer Fakir have slimmed down the sprawling 63-page document they presented to Bonn into a mere 45-page one. Negotiators will continue hashing it out this week. Talks continue (and are livestreamed) at 3-5 pm today and tomorrow.

Technical fights over carbon markets 

After talks over the Paris Agreement’s carbon offsetting mechanisms collapsed in dramatic fashion at COP28, negotiators are trying to pick up the pieces.

A vast number of issues remain on the table, but diplomats have selected a number of highly technical elements to wrangle over in Bonn.

Observers said the mood is more cordial than in Dubai, but the underlying battle between a tighter regulatory regime and a ‘no-frills’ approach is still very much alive.

Much discussion time last week was taken up with the thorny issue of establishing a process for countries that host offsetting projects to authorise the release of carbon credits.

This is important as approval triggers a so-called ‘corresponding adjustment’, meaning governments can no longer count those emissions reductions towards their national climate targets.

A sizeable group of developing nations – including China, Brazil, the African Group and least-developed countries (LDCs) – want to be able to revoke or revise those authorisations in certain circumstances under Article 6.2 – the mechanism for bilateral exchange of credits.

That would afford them flexibility in case they give out too many offsets and this puts hitting their own climate targets at risk. But a group of developed countries and small-island states are pushing back.

Negotiators are also debating once again whether activities aiming to “avoid” – rather than reduce – emissions should be allowed in the new UN carbon market under Article 6.4. Most countries are against that, while only the Philippines are actively pushing for their inclusion.

As some observers have pointed out, giving a green light to the inclusion of emission avoidance could create some perverse incentives, such as fossil fuel companies promising to leave some oil or gas fields unexplored, then quantifying the avoided emissions and selling them as carbon offsets.

Transparency call 

UN Climate Change head Simon Stiell has just made a speech reiterating a call by COP29 host nation Azerbaijan for countries to get their biennial transparency reports in by November’s Baku summit.

These reports are new. Only Andorra and Guyana have published them so far. They are intended, as Stiell put it, to “shine a light on progress”, showing whether countries are on track with their national climate plans or “are the lights flashing red on the console?”

They don’t have to be perfect, he said. “Nobody is expecting countries facing enormous human and economic challenges to submit a platinum-standard report first time around”. But, he added, “I encourage you all to submit the best possible report you can, this year.”

News in brief

Costly climate damage: Extreme weather has caused more than $41 billion in damage in the six months since COP28, according to a new report by Christian Aid. Four extreme weather events in this time – all scientifically shown to have been made more likely and/or intense by climate change – killed over 2,500 people, it says. They encompass flooding in Brazil, the UAE and East Africa, and heatwaves across Asia. The charity says these figures underscore the need for more loss and damage funding.

How to set a ‘good’ 2035 target: Climate Action Tracker (CAT) has released a guide for the 2035 targets countries must include in their next NDCs, saying they should be ambitious, fair, credible and transparent, with developed countries ramping up climate finance. They also need to strengthen their existing 2030 targets, which “are far from” aligned with the 1.5C global warming limit, it adds. Climate Analytics CEO Bill Hare warns that the CAT projection of warming from current policies is still at 2.7C – unchanged from 2021. “Governments appear to be flatlining on climate action, while all around them the world is in climate chaos, from heatwaves to floods and wildfires,” he warns.

Raise the bar for NDCs 3.0: new briefing from the Energy Transitions Commission, a coalition of industry and other players in the energy sector, says that if governments reflect existing policy commitments made at COP28 and nationally, as well as the latest technological progress, in the next round of NDCs (known as NDCs 3.0), overall ambition levels could almost triple. That would save around 18 gigatonnes of CO2e per year in 2035 and put the world on a trajectory to limit warming to 2C, the commission says.

Forests missing in NDC action: Despite global commitments to halt deforestation by 2030, only eight of the top 20 countries most responsible for tropical deforestation have quantified targets on forests in their current NDCs, says a new report from the UN-REDD Programme. Current NDC pledges submitted between 2017–2021 do not meet the 2030 goal to halt and reverse deforestation, it adds. NDCs must integrate existing national strategies to reduce emissions from deforestation and forest degradation (REDD+) – which 15 of the 20 countries have adopted – while the NDCs 3.0 should include concrete, measurable targets on forests, it recommends.

The post Bonn bulletin: Crunch time for climate finance appeared first on Climate Home News.

Bonn bulletin: Crunch time for climate finance

Continue Reading

Climate Change

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Published

on

Weather disasters are shared experiences in the Maine foothills and communities are preparing for a wetter, warmer future.

The December 2023 flood. The 2022 Halloween storm. The Patriots Day storm of 2007. The Great Ice Storm of 1998.

Nonprofit Center Works with Rural Maine Towns to Prepare for and Protect Against Extreme Weather

Continue Reading

Climate Change

Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

Published

on

In Kenya’s Laikipia County where temperatures can reach as high as 30 degrees Celsius, a local building technology is helping homes stay cooler while supporting education, creating jobs and improving the livelihoods and resilience of community residents, Climate Home News found on a visit to the region.

Situated in a semi-arid region, houses in Laikipia are mostly built with wood or cement blocks with corrugated iron sheets for roofing. This building method usually leaves the insides of homes scorching hot – and as global warming accelerates, the heat is becoming unbearable.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, lived in these harsh conditions until 2023, when the Laikipia Integrated Housing Project began in his community.

Nine of our best climate stories from 2025

The project uses compressed earth block (CEB) technology, drawing on traditional building methods and local materials – including soil, timber, grass and cow dung – to keep buildings cool in the highland climate. The thick earth walls provide insulation against the heat.

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

Peter Muthui, principal of Mukima Secondary School in Laikipia County, stands in front of classroom blocks built with compressed earth blocks (Photo: Vivian Chime)

“Especially around the months of September all the way to December, it is very, very hot [in Laikipia], but as you might have noticed, my house is very cool even during the heat,” Muthui told Climate Home News.

His school has also deployed the technology for classrooms and boarding hostels to ensure students can carry on studying during the hottest seasons of the year. This way, they are protected from severe conditions and school closures can be avoided. In South Sudan, dozens of students collapsed from heat stroke in the capital Juba earlier this year, causing the country to shutter schools for weeks.

COP30 sees first action call on sustainable, affordable housing

The buildings and construction sector accounts for 37% of global emissions, making it the world’s largest emitter of greenhouse gases, according to the UN Environment Programme (UNEP). While calls to decarbonise the sector have grown, meaningful action to cut emissions has remained limited.

At COP28 in Dubai, the United Arab Emirates and Canada launched the Cement and Concrete Breakthrough Initiative to speed up investment in the technologies, policies and tools needed to put the cement and concrete industry on a net zero-emissions path by 2050.

Canada’s innovation minister, François-Philippe Champagne, said the initiative aimed to build a competitive “green cement and concrete industry” which creates jobs while building a cleaner future.

    Momentum continued at COP30, where the Intergovernmental Council for Buildings and Climate (ICBC) held its first ministerial meeting and adopted the Belém Call for Action for Sustainable and Affordable Housing.

    Coordinated by UNEP’s Global Alliance for Buildings and Construction, the council has urged countries to embed climate considerations into affordable housing from the outset, “ensuring the drive to deliver adequate homes for social inclusion goes hand in hand with minimising whole-life emissions and
    environmental impacts”.

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    Homes built with compressed earth blocks in Laikipia (Photo: Julián Reingold)

    With buildings responsible for 34% of energy-related emissions and 32% of global energy demand, and 2.8 billion people living in inadequate housing, the ICBC stressed that “affordable, adequate, resource-efficient, low-carbon, climate-resilient and durable housing is essential to a just transition, the achievement of the Sustainable Development Goals and the effective implementation of the Paris Agreement”.

    Compressed earth offers local, green alternative

    By using locally sourced materials, and just a little bit of cement, the compressed earth technology is helping residents in Kenya’s Laikipia region to build affordable, climate-smart homes that reduce emissions and environmental impacts while creating economic opportunities for local residents, said Dacan Aballa, construction manager at Habitat for Humanity International, the project’s developers.

    Aballa said carbon emissions in the construction sector occur all through the lifecycle, from material extraction, processing and transportation to usage and end of life. However, by switching to compressed earth blocks, residents can source materials available in their environment, avoiding nearly all of that embedded carbon pollution.

    According to the World Economic Forum (WEF), global cement manufacturing is responsible for about 8% of total CO2 emissions, and the current trajectory would see emissions from the sector soar to 3.8 billion tonnes per year by 2050 – a level that, compared to countries, would place the cement industry as one of the world’s top three or four emitters alongside the US and China.

    Tripling adaptation finance is just the start – delivery is what matters

    Comparing compressed earth blocks and conventional materials in terms of carbon emissions, Aballa said that by using soil native to the area, the process avoids the fossil fuels that would normally have been used for to produce and transport building materials, slashing carbon and nitrogen dioxide emissions.

    The local building technology also helps save on energy that would have been used for cooling these houses as well as keeping them warm during colder periods, Aballa explained.

    Justin Atemi, water and sanitation officer at Habitat for Humanity, said the brick-making technique helps reduce deforestation too. This is because the blocks are left to air dry under the sun for 21 days – as opposed to conventional fired-clay blocks that use wood as fuel for kilns – and are then ready for use.

    Women walk passed houses in the village of Kangimi, Kaduna State, Nigeria (Photo: Sadiq Mustapha)

    Traditional knowledge becomes adaptation mechanism

    Africa’s red clay soil was long used as a building material for homes, before cement blocks and concrete became common. However, the method never fully disappeared. Now, as climate change brings higher temperatures, this traditional building approach is gaining renewed attention, especially in low-income communities in arid and semi-arid regions struggling to cope with extreme heat.

    From Kenya’s highlands to Senegal’s Sahelian cities, compressed earth construction is being repurposed as a low-cost, eco-friendly option for homes, schools, hospitals – and even multi-storey buildings.

    Senegal’s Goethe-Institut in Dakar was constructed primarily using compressed earth blocks. In Mali, the Bamako medical school, which was built with unfired mud bricks, stays cool even during the hottest weather.

    And more recently, in Nigeria’s cultural city of Benin, the just-finished Museum of West African Art (MOWA) was built using “rammed earth” architecture – a similar technology that compresses moist soil into wooden frames to form solid walls – making it one of the largest such structures in Africa.

    The post Earth blocks keep homes cool while cutting emissions in Kenya’s drylands appeared first on Climate Home News.

    Earth blocks keep homes cool while cutting emissions in Kenya’s drylands

    Continue Reading

    Climate Change

    Using energy-hungry AI to detect climate tipping points is a paradox

    Published

    on

    David Sathuluri is a Research Associate and Dr. Marco Tedesco is a Lamont Research Professor at the Lamont-Doherty Earth Observatory of Columbia University.

    As climate scientists warn that we are approaching irreversible tipping points in the Earth’s climate system, paradoxically the very technologies being deployed to detect these tipping points – often based on AI – are exacerbating the problem, via acceleration of the associated energy consumption.

    The UK’s much-celebrated £81-million ($109-million) Forecasting Tipping Points programme involving 27 teams, led by the Advanced Research + Invention Agency (ARIA), represents a contemporary faith in technological salvation – yet it embodies a profound contradiction. The ARIA programme explicitly aims to “harness the laws of physics and artificial intelligence to pick up subtle early warning signs of tipping” through advanced modelling.

    We are deploying massive computational infrastructure to warn us of climate collapse while these same systems consume the energy and water resources needed to prevent or mitigate it. We are simultaneously investing in computationally intensive AI systems to monitor whether we will cross irreversible climate tipping points, even as these same AI systems could fuel that transition.

    The computational cost of monitoring

    Training a single large language model like GPT-3 consumed approximately 1,287 megawatt-hours of electricity, resulting in 552 metric tons of carbon dioxide – equivalent to driving 123 gasoline-powered cars for a year, according to a recent study.

    GPT-4 required roughly 50 times more electricity. As the computational power needed for AI continues to double approximately every 100 days, the energy footprint of these systems is not static but is exponentially accelerating.

    UN adopts first-ever resolution on AI and environment, but omits lifecycle

    And the environmental consequences of AI models extend far beyond electricity usage. Besides massive amounts of electricity (much of which is still fossil-fuel-based), such systems require advanced cooling that consumes enormous quantities of water, and sophisticated infrastructure that must be manufactured, transported, and deployed globally.

    The water-energy nexus in climate-vulnerable regions

    A single data center can consume up to 5 million gallons of drinking water per day – sufficient to supply thousands of households or farms. In the Phoenix area of the US alone, more than 58 data centers consume an estimated 170 million gallons of drinking water daily for cooling.

    The geographical distribution of this infrastructure matters profoundly as data centers requiring high rates of mechanical cooling are disproportionately located in water-stressed and socioeconomically vulnerable regions, particularly in Asia-Pacific and Africa.

    At the same time, we are deploying AI-intensive early warning systems to monitor climate tipping points in regions like Greenland, the Arctic, and the Atlantic circulation system – regions already experiencing catastrophic climate impacts. They represent thresholds that, once crossed, could trigger irreversible changes within decades, scientists have warned.

    Nine of our best climate stories from 2025

    Yet computational models and AI-driven early warning systems operate according to different temporal logics. They promise to provide warnings that enable future action, but they consume energy – and therefore contribute to emissions – in the present.

    This is not merely a technical problem to be solved with renewable energy deployment; it reflects a fundamental misalignment between the urgency of climate tipping points and the gradualist assumptions embedded in technological solutions.

    The carbon budget concept reveals that there is a cumulative effect on how emissions impact on temperature rise, with significant lags between atmospheric concentration and temperature impact. Every megawatt-hour consumed by AI systems training on climate models today directly reduces the available carbon budget for tomorrow – including the carbon budget available for the energy transition itself.

    The governance void

    The deeper issue is that governance frameworks for AI development have completely decoupled from carbon budgets and tipping point timescales. UK AI regulation focuses on how much computing power AI systems use, but it does not require developers to ask: is this AI’s carbon footprint small enough to fit within our carbon budget for preventing climate tipping points?

    There is no mechanism requiring that AI infrastructure deployment decisions account for the specific carbon budgets associated with preventing different categories of tipping points.

    Meanwhile, the energy transition itself – renewable capacity expansion, grid modernization, electrification of transport – requires computation and data management. If we allow unconstrained AI expansion, we risk the perverse outcome in which computing infrastructure consumes the surplus renewable energy that could otherwise accelerate decarbonization, rather than enabling it.

      What would it mean to resolve the paradox?

      Resolving this paradox requires, for example, moving beyond the assumption that technological solutions can be determined in isolation from carbon constraints. It demands several interventions:

      First, any AI-driven climate monitoring system must operate within an explicitly defined carbon budget that directly reflects the tipping-point timescale it aims to detect. If we are attempting to provide warnings about tipping points that could be triggered within 10-20 years, the AI system’s carbon footprint must be evaluated against a corresponding carbon budget for that period.

      Second, governance frameworks for AI development must explicitly incorporate climate-tipping point science, establishing threshold restrictions on computational intensity in relation to carbon budgets and renewable energy availability. This is not primarily a “sustainability” question; it is a justice and efficacy question.

      Third, alternative models must be prioritized over the current trajectory toward ever-larger models. These should include approaches that integrate human expertise with AI in time-sensitive scenarios, carbon-aware model training, and using specialized processors matched to specific computational tasks rather than relying on universal energy-intensive systems.

      The deeper critique

      The fundamental issue is that the energy-system tipping point paradox reflects a broader crisis in how wealthy nations approach climate governance. We have faith that innovation and science can solve fundamental contradictions, rather than confronting the structural need to constrain certain forms of energy consumption and wealth accumulation. We would rather invest £81 million in computational systems to detect tipping points than make the political decisions required to prevent them.

      The positive tipping point for energy transition exists – renewable energy is now cheaper than fossil fuels, and deployment rates are accelerating. What we lack is not technological capacity but political will to rapidly decarbonize, as well as community participation.

      IEA: Slow transition away from fossil fuels would cost over a million energy sector jobs

      Deploying energy-intensive AI systems to monitor tipping points while simultaneously failing to deploy available renewable energy represents a kind of technological distraction from the actual political choices required.

      The paradox is thus also a warning: in the time remaining before irreversible tipping points are triggered, we must choose between building ever-more sophisticated systems to monitor climate collapse or deploying available resources – capital, energy, expertise, political attention – toward allaying the threat.

      The post Using energy-hungry AI to detect climate tipping points is a paradox appeared first on Climate Home News.

      Using energy-hungry AI to detect climate tipping points is a paradox

      Continue Reading

      Trending

      Copyright © 2022 BreakingClimateChange.com