This week we cover LM Wind Power’s patent for improved hybrid pultrusion plates for blades, trying to manage lightning. Also GE Vernova’s method for placing a crane assembly on the nacelle. And a double cereal bowl for slow breakfast-eaters.
Fill out our Uptime listener survey and enter to win an Uptime mug! Register for Wind Energy O&M Australia! https://www.windaustralia.com
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Pardalote Consulting – https://www.pardaloteconsulting.com
Weather Guard Lightning Tech – www.weatherguardwind.com
Intelstor – https://www.intelstor.com
Phil Totaro: This is Power Up, where groundbreaking wind energy ideas become your clean energy future. Here’s your hosts, Allen Hall and Phil Totaro.
Allen Hall: Alright, Phil, our first patent of the week comes from our friends at LM Wind Power, and it is for improved hybrid pultrusion plates for wind turbine blades. That’s a mouthful, by the way.
But what they mean is that they have these protrusion plates that are the main structural element inside of the blade and LM likes to mix carbon fiber with fiberglass is a lot cheaper. So you can actually make stronger structural spars or spar caps by mixing carbon fiber with fiberglass. All that makes sense.
The issue is lightning, actually. And when lightning likes to flow down carbon fiber quite naturally if you don’t do it right, if you don’t mix the fiberglass and the carbon just right and lay them out in certain orientations, you can get carbon sparking the carbon, which can damage the fiberglass, which can damage the protrusion, and your blade falls over.
So LM has come up with a really unique way of controlling where the fibers go in a pultrusion.
Phil Totaro: Yeah, and this is really fascinating to me because they have been one of the pioneers of developing this hybrid glass and, and carbon blade over the past, you know, decade or more that they’ve been investigating this type of technology.
And what they’re specifically doing with this is, as you mentioned, it’s, it’s really about controlling the temperature. The fiber orientation so that you don’t have the arcing issues that you mentioned. But also, you know, when you’re passing the lightning current through anything, whether it’s copper wire, whether it’s carbon or what have you, it heats up and the way it heats up can, you know, with.
With this type of an application can specifically weaken or damage or deform the blade. And that’s obviously undesirable. So this is really fascinating how they’ve kind of taken this kind of hybrid material technology to the next level with, all right, well, we figured out how to, you know, orient fibers but we need to tune it.
in a way where you can actually conduct lightning that’s not going to, you know, overheat the blade and, and damage things. So this is actually really fascinating and I, I hope that they’re actually using this in or have this in commercial use because this is it’s quite an interesting idea and a really clever approach to You know, be able to address a, a pretty common problem.
Allen Hall: Our next patent comes from GE Vernova. It, it’s a way of creating a crane assembly on the the cell by using the hub as a means of transport. So the concept goes like this. I have a winch on the hub. I lower that winch cable down, and I pick up this crane assembly and I’ll hoist it up to the bottom. of the hub, and I mount it to the bottom of the hub.
Then I rotate the hub, so now this crane’s on top of the hub. I add some more support pieces into the nacelle, and now I have a crane on top of the nacelle without using another crane to get it there. It’s a pretty slick idea, Phil.
Phil Totaro: Yeah, and this is obviously different than some of the other systems that are in use today, which either involve, you know, a crane pick to be able to get the, you know, nacelle mounted crane up the tower But this is entirely as, as described by GE Renova self installing as far as using a, a, a turbine based or ground-based winch system to hoist the, the, you know, hub mounted crane up to you know, hub height.
And then as you said, kind of rotated around again. The difference between this being that this is hub mounted versus nacelle mounted. So it does add a little bit of complexity when it comes to balancing out your loads. Having something that’s nacelle mounted is necessarily safer in that you’ve got the tower basically directly underneath you, so you’re not creating this bending moment of inertia with, you know, having something kind of off axis from, from, you know, the tower support.
But it’s. Potential for cost savings might actually outweigh some of those structural risks and for certain types of repairs potentially that don’t necessarily involve picking the entire gearbox out and lowering it down you know, for, for maybe smaller component repairs, this is kind of an ideal solution.
So I, I really liked this one.
Allen Hall: I think it’s already being in use, Phil. Based upon the patent and the description of it, it looks like they’ve sussed this out and have at least tried it on a Turbine, but I haven’t seen it done in the United States, but maybe over in Europe, they’re, they’re using us for some applications.
Phil Totaro: Potentially. Yeah. And it’d be, it’d be great to see. And that’s one thing we try to do over at Intel Store is we want to be able to track the commercial use of these ideas that we talk about on the show. And so we’re, we’re constantly scouring for any publicly available information we can get. To to confirm the commercial use of any of these patented technologies.
Allen Hall: Our next patent touches an area which we are all have experienced. You get up in the morning, you, you go to the kitchen, you pour yourself a coffee and a bowl of cereal and the. Treachery begins right there because your cereal gets soggy. You’re just not quite awake and it takes you a long time to get going.
By the time you get active and just starting to eat the cereal, the cereal is soggy. Well, there has been an invention to deal with that situation. Now, if you can picture sort of two bowls connected to each other with a tube. The lower bowl holds the milk, the upper bowl holds the dry cereal, and the tube connects them together.
So the concept goes like this. I only push in some of the dry cereal into the milk just before I’m ready to eat it so my cereal doesn’t get soggy. Now, Phil, this sounds like a contraption that I would tip over and spill milk on myself in the morning, making my breakfast even worse than when I started it.
But, evidently this thing must have I did a little bit of search on the internet and there is a thing there that looks like it. So, it’s sort of a crazy idea, but seems to be in practice somewhere.
Phil Totaro: I mean, Allen, you can buy almost anything that your heart desires on Alibaba, you know, over in China. But as far as mainstream usage and acceptance of this, I’m I’m not quite sure that it’s gonna meet everybody’s needs.
It, it is a, it is a fascinating way to address a challenge, but you know, I, I guess for most people, they can just maybe eat a little faster or, I don’t know, before, before everything gets soggy.
https://weatherguardwind.com/lm-pultrusion-ge-nacelle-crane/
Renewable Energy
Marinus Link Approval, Ørsted Strategic Pivot
Weather Guard Lightning Tech
Marinus Link Approval, Ørsted Strategic Pivot
Allen discusses Australia’s ‘Marinus Link’ power grid connection, a $990 million wind and battery project by Acciona, and the Bank of Ireland’s major green investment in East Anglia Three. Plus Ørsted’s strategic changes and Germany’s initiative to reduce dependency on Chinese permanent magnets.
Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!
Good day, this is your friend with a look at the winds of change sweeping across our world. From the waters around Australia to the boardrooms of Europe, the clean energy revolution is picking up speed. These aren’t just stories about wind turbines and power cables. They’re stories about nations and companies making billion dollar bets on a cleaner tomorrow.
There’s good news from Down Under today. Australia and Tasmania are officially connecting their power grids with a massive underwater cable project called the Marinus Link.
The project just got final approval from shareholders including the Commonwealth of Australia, the State of Tasmania, and the State of Victoria. Construction begins in twenty twenty six, with completion set for twenty thirty.
This isn’t just any cable. When finished, it will help deliver clean renewable energy from Tasmania to millions of homes on the mainland. The project promises to reduce electricity prices for consumers across the region.
Stephanie McGregor, the project’s chief executive, says this will change the course of a nation. She’s right. When you connect clean energy sources across vast distances, everyone wins.
The Marinus Link will cement Australia’s position as a leader in the global energy transition. But this is just the beginning of our story from the land Down Under.
Here’s a story about big money backing clean energy. Spanish renewable developer Acciona is moving forward with a nine hundred ninety million dollar wind and battery project in central Victoria, Australia.
The Tall Tree project will include fifty three wind turbines and a massive battery storage system. Construction starts in twenty twenty seven, with operations beginning in twenty twenty nine.
But here’s what makes this special. The project has been carefully designed to protect local wildlife. Acciona surveyed eighty two threatened plant species and fifty six animal species near the site. They’ve already reduced the project footprint by more than twenty four square kilometers to protect high value vegetation areas.
This massive investment will create construction jobs and long term maintenance positions in the region. It will also provide clean electricity to power hundreds of thousands of homes while reducing reliance on fossil fuels.
When companies invest nearly a billion dollars in clean energy, they’re betting on a cleaner future. And Australia isn’t the only place where that smart money is flowing.
The Bank of Ireland is making headlines today with its largest green investment ever. The bank has committed eighty million pounds to East Anglia Three, an offshore wind farm that will become the world’s second largest when it begins operating next year.
Located seventy miles off England’s east coast, East Anglia Three will generate enough clean electricity to power more than one point three million homes.
John Feeney, chief executive of the bank’s corporate division, calls this exactly the kind of transformative investment that drives innovation and accelerates the energy transition.
This follows the bank’s earlier ninety eight million pound commitment to Inch Cape wind farm off Scotland’s coast. The Bank of Ireland has set a target of thirty billion euros in sustainability related lending by twenty thirty. They’ve already reached fifteen billion in the first quarter of this year.
When major financial institutions back clean energy this aggressively, they’re signaling where the smart money is going. But what happens when even the biggest players need to adjust their sails?
Denmark’s Orsted is recalibrating its strategy amid changing market conditions. The company is considering raising up to five billion euros to strengthen its financial position while scaling back some expansion plans.
Orsted has reduced its twenty thirty installation targets from fifty gigawatts to between thirty five to thirty eight gigawatts. But don’t mistake this for retreat. The company is focusing on high margin, high quality projects while maintaining its leadership in offshore wind.
The company’s Revolution Wind project in Rhode Island and Sunrise Wind in New York remain on track for completion in twenty twenty six and twenty twenty seven. These projects will deliver clean electricity to millions of Americans.
CEO Rasmus Errboe is implementing aggressive cost cutting measures, including reducing fixed costs by one billion Danish kroner by twenty twenty six. The company plans to divest one hundred fifteen billion kroner worth of assets to free capital for core projects.
Sometimes the smartest strategy is knowing when to consolidate and focus on what you do best. For Orsted, that’s building the world’s most efficient offshore wind farms. And speaking of strategic thinking, Europe is planning ahead for energy independence.
Germany is leading a European push to reduce dependence on Chinese permanent magnets. The German wind industry has proposed that Europe source thirty percent of its permanent magnets from non Chinese suppliers by twenty thirty, rising to fifty percent by twenty thirty five.
Currently, more than ninety percent of these vital rare earth magnets come from China. The German Federal Ministry for Economic Affairs and Energy is backing this diversification effort, working with industry associations to identify alternative suppliers.
The roadmap calls for turbine manufacturers to establish contacts with new suppliers by mid twenty twenty five, with production facilities potentially operational by twenty twenty nine.
Karina Wurtz, Managing Director of the Offshore Wind Energy Foundation, calls this a strong signal toward a new industrial policy that addresses geopolitical risks.
This isn’t just about reducing dependence on one country. It’s about building resilient supply chains that ensure the continued growth of clean energy. When an industry plans this thoughtfully for its future, that future looks very bright indeed.
You see, the news stories this week tell us something important. From Australia’s underwater cables to Germany’s supply chain strategy, the world is building the infrastructure for a clean energy future. Billions of dollars are flowing toward wind power. Major banks are making their largest green investments ever. Even when companies face challenges, they’re doubling down on what works.
The wind energy industry isn’t just growing. It’s maturing. It’s getting smarter about where to invest and how to build sustainably. And that means the winds of change aren’t just blowing… they’re here to stay.
And now you know… the rest of the story.
https://weatherguardwind.com/marinus-link-orsted/
Renewable Energy
Joint Statement from ACP, ACORE, and AEU on DOE Grid Reliability and Security Protocol Rehearing Request
-
Grid Infrastructure -
Policy -
Press Releases
Joint Statement from ACP, ACORE, and AEU on DOE Grid Reliability and Security Protocol Rehearing Request
WASHINGTON, D.C., August 6, 2025 – The American Clean Power Association (ACP), American Council on Renewable Energy (ACORE), and Advanced Energy United, released the following statement after submitting a joint rehearing request to urge the Department of Energy (DOE) to reevaluate their recent protocol issued with the stated goal of identifying risk in grid reliability and security:
“As demand for energy surges, grid reliability must rely on sound modeling, reasonable forecasts, and unbiased analysis of all technologies. Instead, DOE’s protocol relies on inaccurate and inconsistent assumptions that undercut the credibility of certain technologies in favor of others.
“Americans deserve to have confidence that the government is taking advantage of ready-to-deploy and affordable resources to support communities across the country. Clean energy technologies are the fastest growing sources of American-made energy that are ready to keep prices down and meet demand.
“Providing a roadmap that offers a clear-eyed view of risk is critical to meeting soaring demand across the country. The Department of Energy report missed the opportunity to present all the viable types of energy needed to address reliability and keep energy affordable. We urge DOE to reevaluate and enable those charged with securing and future-proofing our grid to meet the moment with every available resource.”
###
ABOUT ACORE
For over 20 years, the American Council on Renewable Energy (ACORE) has been the nation’s leading voice on the issues most essential to clean energy expansion. ACORE unites finance, policy, and technology to accelerate the transition to a clean energy economy. For more information, please visit http://www.acore.org.
Media Contacts:
Stephanie Genco
Senior Vice President, Communications
American Council on Renewable Energy
genco@acore.org
The post Joint Statement from ACP, ACORE, and AEU on DOE Grid Reliability and Security Protocol Rehearing Request appeared first on ACORE.
https://acore.org/news/joint-statement-from-acp-acore-and-aeu-on-doe-grid-reliability-and-security-protocol-rehearing-request/
Renewable Energy
5 Ways To Finance Your Solar Panels In Australia
-
Climate Change2 years ago
Spanish-language misinformation on renewable energy spreads online, report shows
-
Climate Change Videos2 years ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Greenhouse Gases1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Climate Change1 year ago
嘉宾来稿:满足中国增长的用电需求 光伏加储能“比新建煤电更实惠”
-
Carbon Footprint1 year ago
US SEC’s Climate Disclosure Rules Spur Renewed Interest in Carbon Credits
-
Climate Change2 years ago
Why airlines are perfect targets for anti-greenwashing legal action
-
Climate Change Videos2 years ago
The toxic gas flares fuelling Nigeria’s climate change – BBC News
-
Climate Change2 years ago
Some firms unaware of England’s new single-use plastic ban